<  Retour au portail Polytechnique Montréal

Documents publiés en "2025"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Nombre de documents: 6

Département de génie mécanique

Desgagnes, L., Tangestani, R., Miao, H., Natarajan, A., Rudloff, R., Pendurti, S., Bitar-Nehme, E., & Martin, É. (mars 2025). A Layer-By-Layer FEM Curing Model for Binder Jetting of 316L [Communication écrite]. 154th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society (TMS 2025), Las Vegas, NV, USA. Publié dans The minerals, metals & materials series. Lien externe

Khazaee, S., Bitar-Nehme, E., Boukhili, R., Kostenov, J., Regnaud, W., & Martin, É. (mars 2025). Development of an Environmentally Friendly and Low-Cost Binder for 17-4PH Metal Part Printing via Fused Deposition Modeling [Communication écrite]. 154th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society (TMS 2025), Las Vegas, NV, USA. Publié dans The minerals, metals & materials series. Lien externe

Khazaee, S., Bitar-Nehme, E., Boukhili, R., Kostenov, J., Regnaud, W., & Martin, É. (2025). A Low-Viscosity, Recyclable Polymer-Based Binder Strategy for Metal FDM: Toward High Powder Loading, Sustainable Processing, and Comprehensive Characterization of 17-4PH Stainless Steel Parts. Polymers, 17(19), 2575. Lien externe

Moradi, M., Karimialavijeh, H., Bitar-Nehme, E., & Martin, É. (mars 2025). Printability and Green Mechanical Properties of Binder Jet Additive Manufactured Co–Cr–Mo Parts [Communication écrite]. 154th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society (TMS 2025), Las Vegas, NV, USA. Publié dans The minerals, metals & materials series. Lien externe

Zeng, M., Feng, M., Mayer, J. R. R., Bitar-Nehme, E., & Duong, X. T. (2025). Machine learning models for predicting volumetric errors based on scale and master balls artefact probing data. CIRP Journal of Manufacturing Science and Technology, 59, 135-157. Disponible

Zeng, M., Mayer, J. R. R., Feng, M., Bitar-Nehme, E., & Truong Duong, X. (2025). Comparison of Two Machine Learning Models for Predicting Volumetric Errors From On-The-Fly R-Test Type Device Data and Virtual End Point Constraints. Journal of Machine Engineering, 25, 5-19. Lien externe

Liste produite: Mon Dec 8 02:26:02 2025 EST.