![]() | Monter d'un niveau |
Ibrahim, E., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2025). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). Disponible
Ibrahim, E., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2025). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). Disponible
Abdellaoui, A., Aubé, F., Benabbou, L., El Hallaoui, I., & Amazouz, M. (2025). A Decomposition-Based Framework for Large-Scale Multi-Period Log-Truck Routing and Scheduling: A Case Study in Canadian Forestry. IFAC-PapersOnLine, 59(10), 208-213. Lien externe
Ibrahim, E., Ragab, A., Amer, M., Ajao, O., Benali, M., Boffito, D. C., Dagdougui, H., & Amazouz, M. (2025). Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection. Digital Chemical Engineering, 14, 100207 (26 pages). Disponible