![]() | Monter d'un niveau |
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-to-design : reinforcement learning-assisted chemical process optimization [Communication écrite]. 10th International Conference on Foundations of Computer Aid Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Disponible
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-To-Design: Reinforcement Learning-Assisted Chemical Process Optimization [Communication écrite]. Foundations of Computer Aided Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Publié dans Systems and Control Transactions, 3. Disponible
Al-Sakkari, E. G., Ragab, A., Dagdougui, H., Boffito, D. C., & Amazouz, M. (2024). Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities. Science of the Total Environment, 917, 170085 (32 pages). Lien externe
Abousaid, S., Benabbou, L., Dagdougui, H., Belhaj, I., Bouzekri, H., & Berrado, A. (mai 2023). PV Power Forecasting Using Deep Learning and Physical Models: Case Study of Morocco [Communication écrite]. International Conference on Electrical Systems & Automation, (ICESA 2023), Al Hoceïma, Morocco. Publié dans Advances in Science, Technology & Innovation/Advances in science, technology & innovation. Lien externe
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-to-design : reinforcement learning-assisted chemical process optimization [Communication écrite]. 10th International Conference on Foundations of Computer Aid Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Disponible
Al-Sakkari, E. G., Ragab, A., Ali, M., Dagdougui, H., Boffito, D. C., & Amazouz, M. (juillet 2024). Learn-To-Design: Reinforcement Learning-Assisted Chemical Process Optimization [Communication écrite]. Foundations of Computer Aided Process Design (FOCAPD 2024), Breckenridge, Colorado, USA. Publié dans Systems and Control Transactions, 3. Disponible
Al-Sakkari, E. G., Ragab, A., Dagdougui, H., Boffito, D. C., & Amazouz, M. (2024). Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities. Science of the Total Environment, 917, 170085 (32 pages). Lien externe
Benbrahim, S., Benabbou, L., Dagdougui, H., Belhaj, I., Bouzekri, H., & Berrado, A. (mai 2023). Deep Learning Approach for Solar Irradiance Forecasting: A Moroccan Case Study [Communication écrite]. International Conference on Electrical Systems & Automation, (ICESA 2023), Al Hoceïma, Morocco. Publié dans Advances in Science, Technology & Innovation/Advances in science, technology & innovation. Lien externe
Broda-Milian, K., Dagdougui, H., & Al Mallah, R. (septembre 2024). The Bifurcation Method: White-Box Observation Perturbation Attacks on Reinforcement Learning Agents on a Cyber Physical System [Communication écrite]. International Conference on Machine Learning and Cybernetics (ICMLC 2024), Miyazaki, Japan. Lien externe
Chafiq, M., Benabbou, L., Dagdougui, H., Belhaj, I., Djdiaa, A., Bouzekri, H., & Berrado, A. (juillet 2024). An Analytic Hierarchy Process based approach for assessing the performance of photovoltaic solar power plants [Communication écrite]. 12th IFAC Symposium on Control of Power and Energy Systems (CPES 2024), Rabat, Morocco. Publié dans IFAC PapersOnline, 58(13). Lien externe
Chafiq, M., Benabbou, L., Dagdougui, H., Belhaj, I., Djdiaa, A., Bouzekri, H., & Berrado, A. (mai 2024). Towards a framework selection for assessing the performance of photovoltaic solar power plants: criteria determination [Communication écrite]. 4th International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET 2024), Fez, Morocco (11 pages). Lien externe
Taboga, V., & Dagdougui, H. (2024). A Distributed ADMM-Based Deep Learning Approach for Thermal Control in Multi-Zone Buildings Under Demand Response Events. IEEE Transactions on Automation Science and Engineering, 3435073 (15 pages). Lien externe
Taboga, V., Gehring, C., Le Cam, M., Dagdougui, H., & Bacon, P.-L. (2024). Neural differential equations for temperature control in buildings under demand response programs. Applied Energy, 368, 123433 (14 pages). Lien externe