<  Retour au portail Polytechnique Montréal

Documents publiés en "2023"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Département | Sous-type de document | Aucun groupement
Aller à : D | F | H | L | M | R
Nombre de documents: 11

D

Dussault, J.-P., Migot, T., & Orban, D. (2023). Scalable adaptive cubic regularization methods. Mathematical Programming, 35 pages. Lien externe

F

Fowkes, J., Gould, N. I. M., Montoison, A., & Orban, D. (2023). GALAHAD 4 an open source library of Fortran packages with C and Matlab interfaces for continuous optimization' [Ensemble de données]. Lien externe

H

Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). On GSOR, the Generalized Successive Overrelaxation Method for Double Saddle-Point Problems. SIAM Journal on Scientific Computing, 45(5), A2185-A2206. Lien externe

Huang, N., Dai, Y.-H., Orban, D., & Saunders, M. A. (2023). Properties of semi-conjugate gradient methods for solving unsymmetric positive definite linear systems. Optimization Methods & Software, 38(5), 887-913. Lien externe

L

Leconte, G., & Orban, D. (2023). Complexity of trust-region with unbounded Hessian approximations for smooth and nonsmooth optimization. (Rapport technique n° G-2023-65). Lien externe

M

Monnet, D., & Orban, D. (2023). A multi-precision quadratic regularization method for unconstrained optimization with rouding error analysis. (Rapport technique n° G-2023-18). Lien externe

Montoison, A., & Orban, D. (2023). GPMR : an iterative method for unsymmetric partitioned lliear systems. SIAM Journal on Matrix Analysis and Applications, 44(1), 293-311. Lien externe

Montoison, A., & Orban, D. (2023). Krylov.jl: A Julia basket of hand-picked Krylov methods. The Journal of Open Source Software, 8(89), 5187-5187. Lien externe

Montoison, A., Orban, D., & Saunders, M. A. (2023). MinAres : an iterative solver for symmetric linear systems. (Rapport technique n° G-2023-40). Lien externe

R

Raynaud, P., Orban, D., & Bigeon, J. (2023). Partially-separable loss to parallellize partitioned neural network training. (Rapport technique n° G-2023-36). Lien externe

Raynaud, P., Orban, D., & Bigeon, J. (2023). PLSR1 : a limited-memory partioned quasi-Newton optimizer for partially-separable loss functions. (Rapport technique n° G-2023-41). Lien externe

Liste produite: Sat Jan 4 02:24:36 2025 EST.