Up a level |
Humeniuk, D., Khomh, F., & Antoniol, G. (2023). AmbieGen: A search-based framework for autonomous systems testing. Science of Computer Programming, 230, 102990 (10 pages). External link
Humeniuk, D., Khomh, F., & Antoniol, G. RIGAA at the SBFT 2023 Tool Competition - Cyber-Physical Systems Track [Paper]. 2023 IEEE/ACM International Workshop on Search-Based and Fuzz Testing (SBFT 2023), Melbourne, Australia. External link
Muse, B. A., Khomh, F., & Antoniol, G. (2023). Refactoring practices in the context of data-intensive systems. Empirical Software Engineering, 28(2), 46 (66 pages). External link
Rahman, M. S., Khomh, F., Hamidi, A., Cheng, J., Antoniol, G., & Washizaki, H. (2023). Machine learning application development: practitioners insights. Software Quality Journal, 55 pages. External link
Tambon, F., Khomh, F., & Antoniol, G. (2023). A probabilistic framework for mutation testing in deep neural networks. Information and Software Technology, 155, 107129 (13 pages). External link
Tambon, F., Majfinasab, V., Nikanjam, A., Khomh, F., & Antoniol, G. (2023, April). Mutation testing of deep reinforcement learning based on real faults [Paper]. 16th IEEE Conference on Software Testing, Verification and Validation (ICST 2023), Dublin, Ireland. External link