![]() | Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
Amin, M. N., Salami, B. A., Zahid, M., Iqbal, M., Khan, K., Abu-Arab, A. M., Alabdullah, A. A., & Jalal, F. E. (2022). Investigating the Bond Strength of FRP Laminates with Concrete Using LIGHT GBM and SHAPASH Analysis. Polymers, 14(21), 16 pages. External link
Abdulalim Alabdullah, A., Iqbal, M., Zahid, M., Khan, K., Nasir Amin, M., & Jalal, F. E. (2022). Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Construction and Building Materials, 345, 13 pages. External link
Iqbal, M., Zhang, D., Khan, M. I., Zahid, M., & Jalal, F. E. (2023). Effects of Rebar Size and Volume Fraction of Glass Fibers on Tensile Strength Retention of GFRP Rebars in Alkaline Environment via RSM and SHAP Analyses. Journal of Materials in Civil Engineering, 35(9), 15 pages. External link
Jamal, A., Ijaz, M., Almosageah, M., Al-Ahmadi, H. M., Zahid, M., Ullah, I., & Al Mamlook, R. E. (2022). Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions. Sustainability, 14(23), 15888 (13 pages). External link
Shah, S. F. A., Chen, B., Zahid, M., & Ahmad, M. R. (2022). Compressive strength prediction of one-part alkali activated material enabled by interpretable machine learning. Construction and Building Materials, 360, 129534 (10 pages). External link
Ullah, I., Liu, K., Yamamoto, T., Zahid, M., & Jamal, A. (2023). Modeling of machine learning with SHAP approach for electric vehicle charging station choice behavior prediction. Travel Behaviour and Society, 31, 78-92. External link
Ullah, I., Liu, K., Yamamoto, T., Zahid, M., & Jamal, A. (2022). Prediction of electric vehicle charging duration time using ensemble machine learning algorithm and Shapley additive explanations. International Journal of Energy Research, 46(11), 15211-15230. External link
Wang, C., Ijaz, M., Chen, F., Song, D., Hou, M., Zhang, Y., Cheng, J., & Zahid, M. (2023). Differences in single-vehicle motorcycle crashes caused by distraction and overspeed behaviors: considering temporal shifts and unobserved heterogeneity in prediction. International Journal of Injury Control and Safety Promotion, 30(3), 375-391. External link
Wang, C., Ijaz, M., Chen, F., Easa, S. M., Zhang, Y., Cheng, J., & Zahid, M. (2023). Temporal assessment of injury severities of two types of pedestrian-vehicle crashes using unobserved-heterogeneity models. Journal of Transportation Safety & Security, 50 pages. External link
Wang, C., Ijaz, M., Chen, F., Zhang, Y., Cheng, J., & Zahid, M. (2022). Evaluating gender differences in injury severities of non-helmet wearing motorcyclists: Accommodating temporal shifts and unobserved heterogeneity. Analytic Methods in Accident Research, 36, 100249 (24 pages). External link
Zahid, M., Habib, M. F., Ijaz, M., Ameer, I., Ullah, I., Ahmed, T., & He, Z. (2024). Factors affecting injury severity in motorcycle crashes: Different age groups analysis using Catboost and SHAP techniques. Traffic Injury Prevention, 10 pages. External link