Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Yahmed, A. H., Ben Braiek, H., Khomh, F., Bouzidi, S., & Zaatour, R. (2022). DiverGet: a Search-Based Software Testing approach for Deep Neural Network Quantization assessment. Empirical Software Engineering, 27(7), 193 (32 pages). Lien externe
Yahmed, A. H., Allah Abbassi, A., Nikanjam, A., Li, H., & Khomh, F. (octobre 2023). Deploying deep reinforcement learning systems: a taxonomy of challenges [Communication écrite]. IEEE International Conference on Software Maintenance and Evolution (ICSME 2023), Bogota, Colombia. Lien externe
Yahmed, A. H., Bouchoucha, R., Ben Braiek, H., & Khomh, F. (septembre 2023). An Intentional Forgetting-Driven Self-Healing Method for Deep Reinforcement Learning Systems [Communication écrite]. 38th IEEE/ACM International Conference on Automated Software Engineering (ASE 2023), Echternach, Luxembourg. Lien externe
Openja, M., Nikanjam, A., Yahmed, A. H., Khomh, F., & Jiang, Z. M. J. (octobre 2022). An Empirical Study of Challenges in Converting Deep Learning Models [Communication écrite]. 39th IEEE International Conference on Software Maintenance and Evolution (ICSME 2022), Limassol, Cyprus. Lien externe