![]() | Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de Olivier Vincent figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur Olivier Vincent. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Gros, C., Lemay, A., Vincent, O., Rouhier, L., Bourget, M.-H., Bucquet, A., Cohen, P., & Cohen-Adad, J. (2021). Ivadomed : a medical imaging deep learning toolbox. Journal of Open Source Software, 6(58), 5 pages. Lien externe
Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (juillet 2021). Benefits of linear conditioning for segmentation using metadata [Communication écrite]. 4th Conference on Medical Imaging with Deep Learning (CMDL 2021), Lübeck, Germany. Lien externe
Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J. P., & Cohen-Adad, J. (juillet 2021). Benefits of Linear Conditioning with Metadata for Image Segmentation [Présentation]. Dans 4th Conference on Medical Imaging with Deep Learning (MIDL 2021). Publié dans Proceedings of Machine Learning Research, 143. Lien externe
Vincent, O. (2021). Impact of Rater Style on Deep Learning Segmentation in Medical Imaging [Mémoire de maîtrise, Polytechnique Montréal]. Disponible