Monter d'un niveau |
Ce graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Ahlawat, M., Bostani, A., Tehranchi, A., & Kashyap, R. (juillet 2014). Tunable wavelength shifters using tight focusing in a wideband engineered PPLN crystal [Communication écrite]. Nonlinear Photonics (NP 2014), Barcelona, Spain. Lien externe
Ahlawat, M., Bostani, A., Tehranchi, A., & Kashyap, R. (2013). Agile multicasting based on cascaded X(2) nonlinearities in a step-chirped periodically poled lithium niobate. Optics Letters, 38(15), 2760-2762. Lien externe
Ahlawat, M., Bostani, A., Tehranchi, A., & Kashyap, R. (juin 2013). Temperature-independent flexible broadcasting based on cascaded X(2) nonlinearities in a broadband type-0 step-chirped PPLN [Communication écrite]. CLEO: Science and Innovations (CLEO-SI 2013), San Jose, CA, United states. Lien externe
Ahlawat, M., Bostani, A., Tehranchi, A., & Kashyap, R. (2013). Tunable single-to-dual channel wavelength conversion in an ultra-wideband SC-PPLN. Optics Express, 21(23), 28809-28816. Lien externe
Ahlawat, M., Tehranchi, A., Pandiyan, K., Cha, M., & Kashyap, R. (2012). Tunable All-Optical Wavelength Broadcasting in a PPLN With Multiple Qpm Peaks. Optics Express, 20(24), 27425-27433. Lien externe
Ahlawat, M., Tehranchi, A., Pandiyan, K., Cha, M., & Kashyap, R. (juin 2012). Tunable wavelength broadcasting in a PPLN with multiple QPM peaks [Communication écrite]. Access Networks and In-house Communications (ANIC 2012), Colorado Springs, CO, United states. Lien externe
Bostani, A., Tehranchi, A., & Kashyap, R. (2017). Super-tunable, broadband up-conversion of a high-power CW laser in an engineered nonlinear crystal. Scientific Reports, 7(1). Disponible
Bostani, A., Ahlawat, M., Tehranchi, A., Morandotti, R., & Kashyap, R. (2015). Design, fabrication and characterization of a specially apodized chirped grating for reciprocal second harmonic generation. Optics Express, 23(4), 5183-5189. Lien externe
Bostani, A., Gagne, M., Tehranchi, A., & Kashyap, R. (juillet 2015). Full bandwidth frequency doubling of a high-power CW fiber laser using a bulk aperiodically poled LN [Communication écrite]. Nonlinear Optics (NLO 2015), Kauai, HI. Lien externe
Bostani, A., Ahlawat, M., Tehranchi, A., Morandotti, R., & Kashyap, R. (juillet 2014). SHG response reciprocity for a specially-designed step-chirped grating [Communication écrite]. Nonlinear Photonics (NP 2014), Barcelona, Spain. Lien externe
Bostani, A., Ahlawat, M., Tehranchi, A., Morandotti, R., & Kashyap, R. (juin 2013). Effect of a tightly focused gaussian beam on the broadband SHG response of chirped poled lithium niobate [Communication écrite]. Conference on Lasers and Electro-Optics (CLEO 2013), San Jose, CA, USA. Lien externe
Bostani, A., Ahlawat, M., Tehranchi, A., Morandotti, R., & Kashyap, R. (2013). Tailoring and tuning of the broadband spectrum of a step-chirped grating based frequency doubler using tightly-focused Gaussian beams. Optics Express, 21(24), 29847-29853. Lien externe
Bostani, A., Tehranchi, A., & Kashyap, R. (juin 2012). Engineering of apodized chirped gratings based on desired second-order nonlinearity function [Affiche]. Access Networks and In-house Communications, Colorado Springs, CO. Lien externe
Bostani, A., Tehranchi, A., & Kashyap, R. (2012). Engineering of effective second-order nonlinearity in uniform and chirped gratings. Journal of the Optical Society of America B: Optical Physics, 29(10), 2929-2934. Lien externe
Bostani, A., Tehranchi, A., & Kashyap, R. (juillet 2011). Study of apodization of aperiodically poled lithium niobate (APPLN) for second harmonic generation (SHG) [Communication écrite]. 7th International Workshop on Fibre and Optical Passive Components (WFOPC 2011), Montréal, Québec. Lien externe
Hlil, A. R., Thomas, J., Garcia-Puente, Y., Boisvert, J.-S., Lima, B. C., Rakotonandrasana, A., Maia, L. J. Q., Tehranchi, A., Loranger, S., Gomes, A. S. L., Messaddeq, Y., & Kashyap, R. (2021). Structural and optical properties of Nd:YAB-nanoparticle-doped PDMS elastomers for random lasers. Scientific Reports, 11(1), 16803 (10 pages). Disponible
Hu, Y., Tehranchi, A., Wabnitz, S., Kashyap, R., Chen, Z., & Morandotti, R. (2015). Improved Intrapulse Raman Scattering Control via Asymmetric Airy Pulses. Physical Review Letters, 114(7), 073901 (5 pages). Lien externe
Hu, Y., Tehranchi, A., Wabnitz, S., Chen, Z., Kashyap, R., & Morandotti, R. (juillet 2014). Intra-pulse Raman scattering controlled via asymmetric airy pulses [Communication écrite]. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides (BGPP 2014), Barcelona, Spain. Lien externe
Hu, Y., Tehranchi, A., Wabnitz, S., Chen, Z., Kashyap, R., & Morandotti, R. (juin 2014). Tunable raman soliton self-frequency shift via an asymmetric airy pulse [Communication écrite]. CLEO: QELS Fundamental Science (CLEO-QELS 2014), San Jose, CA, United states. Lien externe
Iezzi, V. L., Büttner, T. F. S., Tehranchi, A., Loranger, S., Kabakova, I. V., Eggleton, B. J., & Kashyap, R. (2016). Temporal characterization of a multi-wavelength Brillouin–erbium fiber laser. New Journal of Physics, 18(5), 1-11. Disponible
Kashyap, R., & Tehranchi, A. (janvier 2024). Mode locking and chaos in Brillouin fibre lasers [Présentation]. Dans SPIE OPTO, 2024, San Francisco, California, United States. Lien externe
Kashyap, R., Bostani, A., & Tehranchi, A. (2014). Grating structures with specifically located domain-inverted regions. (Demande de brevet no WO2014176690). Lien externe
Kashyap, R., & Tehranchi, A. (2013). Quasi-phase-matched wavelength converter. (Brevet no US8411353). Lien externe
Kashyap, R., Tehranchi, A., & Xu, C.-Q. (juillet 2009). Efficient broadband frequency conversion using engineered apodized x(2) gratings and fundamental harmonic resonance [Communication écrite]. 14th OptoElectronics and Communications Conference, Hong Kong, China. Lien externe
Loranger, S., Tehranchi, A., Winful, H., & Kashyap, R. (2018). Realization and optimization of phase-shifted distributed feedback fiber Bragg grating Raman lasers. Optica, 5(3), 295-302. Lien externe
Lambin Iezzi, V., Tehranchi, A., Kashyap, R., & Loranger, S. (juillet 2017). Short cavity multi stokes Brillouin-erbium fiber laser [Communication écrite]. Nonlinear Optics, Waikoloa, Hawaii. Lien externe
Mortazy, E., Le Drogoff, B., Azana, J., Chaker, M., & Tehranchi, A. (juillet 2011). Chirped Bragg grating in silicon based rib waveguide [Communication écrite]. 7th International Workshop on Fibre and Optical Passive Components, WFOPC2011, Montréal, Québec. Lien externe
Mortazy, E., Stateikina, I., Tehranchi, A., Delprat, S., Chaker, M., & Wu, K. (2011). Low-loss CaxBa1-xNb2O 6 ridge waveguide for electro-optic devices. Microelectronic Engineering, 88(3), 218-221. Lien externe
Thomas, J., Meyneng, T., Tehranchi, A., Grégoire, N., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (janvier 2024). Recent progress in laser cooling of oxide only phase separated rare earth silica glasses [Présentation]. Dans SPIE OPTO, 2024, San Francisco, California, United States. Lien externe
Thomas, J., Meyneng, T., Grégoire, N., Monet, F., Tehranchi, A., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (janvier 2023). Laser-induced cooling of rare earth doped oxide-only silica glass [Présentation]. Dans SPIE Photonics West 2023, San Francisco, California, United States. Lien externe
Thomas, J., Meyneng, T., Tehranchi, A., Gregoire, N., Karpov, V., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (2023). Anti-Stokes cooling in highly ytterbium doped phase separated aluminium-yttrium oxide glass by 4 K. Optical Materials, 144, 8 pages. Lien externe
Thomas, J., Meyneng, T., Tehranchi, A., Gregoire, N., Monet, F., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (2023). Demonstration of laser cooling in a novel all oxide GAYY silica glass. Scientific Reports, 13(1), 11 pages. Lien externe
Tehranchi, A., & Kashyap, R. (2023). Extremely Efficient DFB Lasers with Flat-Top Intra-Cavity Power Distribution in Highly Erbium-Doped Fibers. Sensors, 23(3), 10 pages. Lien externe
Thomas, J., Meyneng, T., Tehranchi, A., Manarazan, P., Monet, F., Boisvert, J.-S., Morency, S., Grégoire, N., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (janvier 2022). Characteristics of Yb-doped silica fibers containing Y2O3 nanoparticles for optical refrigeration [Communication écrite]. Photonic Heat Engines : Science and Applications IV, San Francisco, CA, USA (5 pages). Lien externe
Thomas, J., Meyneng, T., Gregoroire, N., Monet, F., Tehranchi, A., Seletskiy, D., Messaddeq, Y., & Kashyap, R. (juillet 2022). Laser cooling of a novel GAYY glass at atmospheric pressure [Communication écrite]. Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials (BP 2022), Maastricht, Netherlands. Lien externe
Tehranchi, A., & Kashyap, R. (2022). Performance Improvement of Ultra-short Distributed Feedback Fiber Lasers by Engineering of Coupling Coefficient Profiles. IEEE Journal of Quantum Electronics, 58(1), 1-7. Lien externe
Tehranchi, A., & Kashyap, R. (2020). Gratings with longitudinal variations in coupling coefficients: super-efficiency and unidirectionality in distributed feedback Raman fiber lasers. New Journal of Physics, 22(10), 103022 (10 pages). Disponible
Tehranchi, A., Iezzi, V. L., & Kashyap, R. (2019). Power Fluctuations and Random Lasing in Multiwavelength Brillouin Erbium-Doped Fiber Lasers. Journal of Lightwave Technology, 37(17), 4439-4444. Lien externe
Tehranchi, A., Iezzi, V. L., & Kashyap, R. (juillet 2018). Temporal instability and random lasing in a brillouin fiber laser [Communication écrite]. Nonlinear Optics (NLO 2019), Waikoloa Beach, HI, United states. Lien externe
Tehranchi, A., & Kashyap, R. (2019). Theoretical investigations of power fluctuations statistics in Brillouin erbium-doped fiber lasers. Optics Express, 27(26), 37508-37515. Lien externe
Tehranchi, A., Loranger, S., & Kashyap, R. (2018). Engineered π-phase-shifted fiber Bragg gratings for efficient distributed feedback Raman fiber lasers. IEEE Journal of Quantum Electronics, 54(3), 1-7. Lien externe
Tehranchi, A., Iezzi, V. L., Loranger, S., & Kashyap, R. (juillet 2017). Control of stokes waves in a Brillouin-erbium highly-nonlinear-fiber laser [Communication écrite]. Advanced Photonics, Sensors 2017, New Orleans, Louisiana. Lien externe
Tehranchi, A., Ahlawat, M., Bostani, A., & Kashyap, R. (2016). Flexible All-Optical Wavelength Shifters Using Strong Focusing in a Wideband Engineered PPLN. IEEE Photonics Technology Letters, 28(18), 1924-1927. Lien externe
Tehranchi, A., & Kashyap, R. (2012). Flattop Efficient Cascaded X⁽²⁾ (SFG + DFG)-Based Wideband Wavelength Converters Using Step-Chirped Gratings. IEEE Journal of Selected Topics in Quantum Electronics, 18(2), 785-793. Lien externe
Tehranchi, A., Morandotti, R., & Kashyap, R. (juillet 2011). Efficient flattop ultra-wideband wavelength converters based on double-pass cascaded sum and difference frequency generation using engineered chirped gratings [Communication écrite]. 10th Nonlinear Optics topical meeting, Kauai, Hawaii. Publié dans Optics Express, 19(23). Lien externe
Tehranchi, A., & Kashyap, R. (juillet 2011). Efficient Ultra-Wideband Wavelength Converters Based on Double-Pass Cascaded SFG + DFG Using Engineered QPM Gratings [Communication écrite]. Nonlinear Optics : materials, fundamentals and applications 2011, Dauai, Hawaii, USA. Lien externe
Tehranchi, A., & Kashyap, R. (janvier 2011). Flattop wideband wavelength converters based on cascaded sum and difference-frequency generation using step-chirped gratings [Communication écrite]. Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications X, San Francisco, CA, United states. Lien externe
Tehranchi, A., Ahlawat, M., Xu, C.-Q., & Kashyap, R. (juillet 2011). Novel techniques for guided-wave wavelength conversion [Communication écrite]. 16th Opto-Electronics and Communications Conference (OECC 2011), Kaohsiung, Taiwan. Lien externe
Tehranchi, A. (2010). Broadband Quasi-Phase-Matched Wavelength Converters [Thèse de doctorat, École Polytechnique de Montréal]. Disponible
Tehranchi, A., & Kashyap, R. (juin 2010). Pump-Detuned Double-Pass cSFG/DFG-Based Wavelength Converters in Lossy PPLN Waveguides [Communication écrite]. Nonlinear Photonics 2010, Karlsruhe, Germany. Lien externe
Tehranchi, A., & Kashyap, R. (2010). Wideband wavelength conversion using double-pass cascaded x(2):x(2) interaction in lossy waveguides. Optics Communications, 283(7), 1485-1488. Lien externe
Tehranchi, A., & Kashyap, R. (2009). Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO₃ waveguides. Optics Express, 17(21), 19113-19119. Lien externe
Tehranchi, A., & Kashyap, R. (octobre 2009). Flattop broadband wavelength converters based on double-pass cascaded SFG + DFG in quasi-phase matched waveguides [Communication écrite]. IEEE LEOS Annual Meeting Conference, Belek-Antalya, Turkey. Lien externe
Tehranchi, A., & Kashyap, R. (août 2009). High-efficiency pump-resonant quasi-phase-matched frequency doublers with flattop broadband responses [Communication écrite]. Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications III, San Diego, CA, United states. Lien externe
Tehranchi, A., & Kashyap, R. (2009). Novel Designs for Efficient Broadband Frequency Doublers Using Singly Pump-Resonant Waveguide and Engineered Chirped Gratings. IEEE Journal of Quantum Electronics, 45(1-2), 187-194. Lien externe
Tehranchi, A., & Kashyap, R. (2009). Response Flattening of Efficient Broadband Wavelength Converters Based on Cascaded Sum and Difference Frequency Generation in Periodically Poled Lithium Niobate Waveguides. IEEE Journal of Quantum Electronics, 45(9), 1114-1120. Lien externe