<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Le, William"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Réseau de collaboration
Nuage de mots
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : G | H | L | O | S
Nombre de documents: 6

G

Grajales, D., Le, W., Dallaire, F., Sheehy, G., David, S., Tran, T., Leblond, F., Ménard, C., & Kadoury, S. (octobre 2023). Towards Real-Time Confirmation of Breast Cancer in the OR Using CNN-Based Raman Spectroscopy Classification [Communication écrite]. 2nd International Workshop on Cancer Prevention Through Early Detection (CaPTion 2023), Vancouver, BC, Canada. Lien externe

H

Henique, G., Bang, C., Markel, D., Le, W., Filion, E., Ngyuen-Tan, P. F., Bahig, H., & Kadoury, S. (mai 2024). Dose aware toxicity prediction in head and neck cancer patients using a deformable 3D CNN on Daily CBCT Acquisitions [Communication écrite]. IEEE International Symposium on Biomedical Imaging (ISBI 2024), Athens, Greece (5 pages). Lien externe

L

Labrecque Langlais, É., Corbin, D., Tastet, O., Hayek, A., Doolub, G., Mrad, S., Tardif, J.-C., Tanguay, J.-F., Marquis-Gravel, G., Tison, G. H., Kadoury, S., Le, W., Gallo, R., Lesage, F., & Avram, R. (2024). Evaluation of stenoses using AI video models applied to coronary angiography. NPJ Digital Medicine, 7, 138 (13 pages). Disponible

O

Ouraou, E., Tonneau, M., Le, W., Filion, É., Campeau, M.-P., Vu, T., Doucet, R., Bahig, H., & Kadoury, S. (2024). Predicting early stage lung cancer recurrence and survival from combined tumor motion amplitude and radiomics on free‐breathing 4D‐CT. Medical Physics, 15 pages. Lien externe

S

Shakeri, S., Le, W., Ménard, C., & Kadoury, S. (avril 2021). Deformable Mri To Transrectal Ultrasound Registration For Prostate Interventions With Shape-Based Deep Variational Auto-Encoders [Communication écrite]. 18th IEEE International Symposium on Biomedical Imaging (ISBI 2021), Nice, France. Lien externe

Shams, R., Le, W., Weihs, A., & Kadoury, S. (avril 2021). Intensity-Based Wasserstein Distance as a Loss Measure for Unsupervised Deformable Deep Registration [Communication écrite]. 18th IEEE International Symposium on Biomedical Imaging (ISBI 2021), Nice, France. Lien externe

Liste produite: Thu Apr 24 03:06:01 2025 EDT.