![]() | Monter d'un niveau |
Matt J. KusnerDépartement de génie informatique et génie logicielCe graphique trace les liens entre tous les collaborateurs des publications de {} figurant sur cette page.
Chaque lien représente une collaboration sur la même publication. L'épaisseur du lien représente le nombre de collaborations.
Utilisez la molette de la souris ou les gestes de défilement pour zoomer à l'intérieur du graphique.
Vous pouvez cliquer sur les noeuds et les liens pour les mettre en surbrillance et déplacer les noeuds en les glissant.
Enfoncez la touche "Ctrl" ou la touche "⌘" en cliquant sur les noeuds pour ouvrir la liste des publications de cette personne.
Un nuage de mots est une représentation visuelle des mots les plus fréquemment utilisés dans un texte ou un ensemble de textes. Les mots apparaissent dans différentes tailles, la taille de chaque mot étant proportionnelle à sa fréquence d'apparition dans le texte. Plus un mot est utilisé fréquemment, plus il apparaît en grand dans le nuage de mots. Cette technique permet de visualiser rapidement les thèmes et les concepts les plus importants d'un texte.
Dans le contexte de cette page, le nuage de mots a été généré à partir des publications de l'auteur {}. Les mots présents dans ce nuage proviennent des titres, résumés et mots-clés des articles et travaux de recherche de cet auteur. En analysant ce nuage de mots, vous pouvez obtenir un aperçu des sujets et des domaines de recherche les plus récurrents et significatifs dans les travaux de cet auteur.Le nuage de mots est un outil utile pour identifier les tendances et les thèmes principaux dans un corpus de textes, facilitant ainsi la compréhension et l'analyse des contenus de manière visuelle et intuitive.
Alabdulmohsin, I., Chiou, N., D'Amour, A., Gretton, A., Koyejo, S., Kusner, M. J., Pfohl, S. R., Salaudeen, O., Schrouff, J., & Tsai, K. (avril 2023). Adapting to latent subgroup shifts via concepts and proxies [Communication écrite]. 26th International Conference on Artificial Intelligence and Statistics (AISTATS 2023), Palau de Congressos, Valencia, Spain. Publié dans Proceedings of Machine Learning Research, 206. Lien externe
Agrawal, N., Bell, J., Gascón, A., & Kusner, M. J. (novembre 2021). MPC-friendly commitments for publicly verifiable covert security [Communication écrite]. ACM SIGSAC Conference on Computer and Communications Security (CCS 2021). Lien externe
Agrawal, N., Shamsabadi, A. S., Kusner, M. J., & Gascón, A. (novembre 2019). QUOTIENT: two-party secure neural network training and prediction [Communication écrite]. ACM SIGSAC Conference on Computer and Communications Security (CCS 2019), London, United Kingdom. Lien externe
Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S., & Hernández-Lobato, J. M. (décembre 2020). Barking up the right tree: an approach to search over molecule synthesis DAGs [Communication écrite]. 34th International Conference on Neural Information Processing Systems (NIPS 2020), Vancouver, British Columbia, Canada. Lien externe
Bradshaw, J., Kusner, M. J., Paige, B., Segler, M. H. S., & Hernández-Lobato, J. M. (mai 2019). A generative model for electron paths [Communication écrite]. 7th International Conference on Learning Representations (ICLR 2019), New Orleans, Louisiana, USA (19 pages). Lien externe
Bradshaw, J., Paige, B., Kusner, M. J., Segler, M. H. S., & Hernández-Lobato, J. M. (décembre 2019). A model to search for synthesizable molecules [Communication écrite]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. Lien externe
Gopakumar, V., Pamela, S., Zanisi, L., Li, Z., Gray, A., Brennand, D., Bhatia, N., Stathopoulos, G., Kusner, M. J., Deisenroth, M. P., & Anandkumar, A. (2024). Plasma surrogate modelling using Fourier neural operators. Nuclear Fusion, 64(5), 056025 (36 pages). Lien externe
Gultchin, L., Watson, D. S., Kusner, M. J., & Silva, R. (juillet 2021). Operationalizing complex causes: a pragmatic view of mediation [Communication écrite]. 38th International Conference on Machine Learning (ICML 2021). Publié dans Proceedings of Machine Learning Research, 139. Lien externe
Gultchin, L., Kusner, M. J., Kanade, V., & Silva, R. (août 2020). Differentiable causal backdoor discovery [Communication écrite]. 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020). Publié dans Proceedings of Machine Learning Research, 108. Lien externe
Gardner, J. R., Kusner, M. J., Xu, Z., Weinberger, K. Q., & Cunningham, J. P. (juin 2014). Bayesian optimization with inequality constraints [Communication écrite]. 31st International Conference on Machine Learning (ICML 2014), Beijing, China. Publié dans Proceedings of Machine Learning Research, 32(2). Lien externe
Huang, G., Guo, C., Kusner, M. J., Sun, Y., Weinberger, K. Q., & Sha, F. (décembre 2016). Supervised word mover's distance [Communication écrite]. 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain. Lien externe
Janz, D., Westhuizen, J. , Paige, B., Kusner, M. J., & Hernández-Lobato, J. M. (juillet 2018). Learning a Generative Model for Validity in Complex Discrete Structures [Communication écrite]. 35th International Conference on Machine Learning (ICLR 2018), Stockholm, Sweden (12 pages). Lien externe
Kaddour, J., Key, O., Nawrot, P., Minervini, P., & Kusner, M. J. (décembre 2023). No train no gain: revisiting efficient training algorithms for transformer-based language models [Communication écrite]. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA. Lien externe
Kaddour, J., Liu, L., Silva, R., & Kusner, M. J. (novembre 2022). When Do Flat Minima Optimizers Work? [Communication écrite]. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana (19 pages). Lien externe
Kaddour, J., Zhu, Y., Liu, Q., Kusner, M. J., & Silva, R. (décembre 2021). Causal effect inference for structured treatments [Communication écrite]. 35th Annual Conference on Neural Information Processing Systems (NeurIPS 2021). Lien externe
Kilbertus, N., Kusner, M. J., & Silva, R. (décembre 2020). A class of algorithms for general instrumental variable models [Communication écrite]. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada. Lien externe
Kusner, M. J., & Loftus, J. R. (2020). The Long Road to Fairer Algorithms. Nature, 578(7793), 34-36. Lien externe
Kusner, M. J., Russell, C., Loftus, J. R., & Silva, R. (juin 2019). Making Decisions that Reduce Discriminatory Impact [Communication écrite]. 36th International Conference on Machine Learning (ICML 2019), Long Beach, California, USA. Publié dans Proceedings of Machine Learning Research, 97. Lien externe
Kilbertus, N., Ball, P. J., Kusner, M. J., Weller, A., & Silva, R. (juillet 2019). The Sensitivity of Counterfactual Fairness to Unmeasured Confounding [Communication écrite]. 35th Conference on Uncertainty in Artificial Intelligence (UAI 2019), Tel Aviv, Israel. Publié dans Proceedings of Machine Learning Research, 115. Lien externe
Kilbertus, N., Gascón, A., Kusner, M. J., Veale, M., Gummadi, K. P., & Weller, A. (juillet 2018). Blind justice: fairness with encrypted sensitive attributes [Communication écrite]. 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. Publié dans Proceedings of Machine Learning Research, 80. Lien externe
Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (décembre 2017). Counterfactual fairness [Communication écrite]. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA. Lien externe
Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (août 2017). Grammar Variational Autoencoder [Communication écrite]. 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia. Publié dans Proceedings of Machine Learning Research, 70. Lien externe
Kusner, M. J., Sun, Y., Sridharan, K., & Weinberger, K. Q. (mai 2016). Private causal inference [Communication écrite]. 19th International Conference on Artificial Intelligence and Statistics (AISTATS 2016), Cadiz, Spain. Lien externe
Kusner, M. J., Gardner, J. R., Garnett, R., & Weinberger, K. Q. (juillet 2015). Differentially private bayesian optimization [Communication écrite]. 32nd International Conference on Machine Learning (ICML'15), Lile, France. Lien externe
Kusner, M. J., Sun, Y., Kolkin, N. I., & Weinberger, K. Q. (juillet 2025). From word embeddings to document distances [Communication écrite]. 32nd International Conference on Machine Learning (ICML 2015), Lile, France. Lien externe
Kusner, M. J., Chen, W., Zhou, Q., Xu, Z., Weinberger, K. Q., & Chen, Y. (juillet 2014). Feature-cost sensitive learning with submodular trees of classifiers [Communication écrite]. 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Québec, Québec, Canada. Lien externe
Kusner, M. J., Tyree, S., Weinberger, K. Q., & Agrawal, K. (juin 2014). Stochastic neighbor compression [Communication écrite]. 31st International Conference on Machine Learning (ICML 2014), Beijing, China. Lien externe
Liu, Q., Kusner, M. J., & Blunsom, P. (juin 2021). Counterfactual Data Augmentation for Neural Machine Translation [Communication écrite]. Conference of the North-American-Chapter of the Association-for-Computational-Linguistics - Human Language Technologies (NAACL-HLT 2021). Lien externe
Maus, N. T., Jones, H. T., Moore, J. S., Kusner, M. J., Bradshaw, J., & Gardner, J. R. (novembre 2022). Local Latent Space Bayesian Optimization over Structured Inputs [Communication écrite]. 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana, USA (14 pages). Lien externe
Mastouri, A., Zhu, Y., Gultchin, L., Korba, A., Silva, R., Kusner, M. J., Gretton, A., & Muandet, K. (juillet 2021). Proximal Causal Learning with Kernels: Two-Stage Estimation and Moment Restriction [Communication écrite]. 38th International Conference on Machine Learning (ICML 2021). Publié dans Proceedings of Machine Learning Research, 139. Lien externe
Malkomes, G., Kusner, M. J., Chen, W., Weinberger, K. Q., & Moseley, B. (décembre 2015). Fast distributed k-center clustering with outliers on massive data [Communication écrite]. 29th International Conference on Neural Information Processing Systems (NIPS 2015), Montréal, Québec, Canada. Lien externe
Narasiah, H., Kitouni, O., Scorsoglio, A., Sturdza, B. K., Hatcher, S., Katcher, K., Khalesi, J., Garcia, D., & Kusner, M. J. (2024). Machine learning discovery of cost-efficient dry cooler designs for concentrated solar power plants. Scientific Reports, 14(1), 19086. Lien externe
Padh, K., Zeitler, J., Watson, D. S., Kusner, M. J., Silva, R., & Kilbertus, N. (avril 2023). Stochastic Causal Programming for Bounding Treatment Effects [Communication écrite]. 2nd Conference on Causal Learning and Reasoning (CCLR 2023), Tübingen, Germany (35 pages). Publié dans Proceedings of Machine Learning Research, 213. Lien externe
Richter, L., He, X., Minervini, P., & Kusner, M. J. (avril 2025). An auditing test to detect behavioral shift in language models [Communication écrite]. 13th International Conference on Learning Representations (ICLR 2025), Singapore, Singapore. Lien externe
Russell, C., Kusner, M. J., Loftus, J. R., & Silva, R. (décembre 2017). When Worlds Collide: Integrating Different Counterfactual Assumptions in Fairness [Communication écrite]. 31st Annual Conference on Neural Information Processing Systems (NIPS 2017), Red Hook, New York. USA. Lien externe
Sanyal, A., Kusner, M. J., Gascón, A., & Kanade, V. (juillet 2018). TAPAS: Tricks to Accelerate (encrypted) Prediction As a Service [Communication écrite]. 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. Publié dans Proceedings of Machine Learning Research, 80. Lien externe
Tsai, K., Pfohl, S. R., Salaudeen, O., Chiou, N., Kusner, M. J., D'amour, A., Koyejo, S., & Gretton, A. (mai 2024). Proxy Methods for Domain Adaptation [Communication écrite]. 27th International Conference on Artificial Intelligence and Statistics (AISTATS 2024), Valencia, Spain (29 pages). Publié dans Proceedings of Machine Learning Research. Lien externe
Wang, H., Liu, Q., Yue, X., Lasenby, J., & Kusner, M. J. (octobre 2021). Unsupervised Point Cloud Pre-training via Occlusion Completion [Communication écrite]. 18th IEEE/CVF International Conference on Computer Vision (ICCV 2021), Montreal, Quebec, Canada. Lien externe
Xu, Z., Kusner, M. J., Weinberger, K. Q., Chen, M., & Chapelle, O. (2014). Classifier cascades and trees for minimizing feature evaluation cost. Journal of Machine Learning Research, 15(1), 2113-2144. Lien externe
Zhu, Y., Gultchin, L., Gretton, A., Kusner, M. J., & Silva, R. (août 2022). Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach [Communication écrite]. 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), Eindhoven, The Netherlands. Publié dans Proceedings of Machine Learning Research, 180. Lien externe
Zantedeschi, V., Kaddour, J., Franceschi, L., Kusner, M. J., & Niculae, V. (avril 2022). DAG Learning on the Permutahedron [Affiche]. 10th International Conference on Learning Representations (ICLR 2023) (9 pages). Lien externe
Zantedeschi, V., Kusner, M. J., & Niculae, V. (juillet 2021). Learning Binary Decision Trees by Argmin Differentiation [Communication écrite]. Non spécifié. Lien externe