<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Farahmand, Amir-Massoud"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Grouper par: Auteurs ou autrices | Date de publication | Sous-type de document | Aucun groupement
Aller à : A | B | F | H | K | L | M | N | P | R | S | V
Nombre de documents: 65

A

Abachi, R., Voelcker, C. A., Garg, A., & Farahmand, A.-M. (juillet 2022). VIPer : iterative value-aware model learning on the value improvement path [Communication écrite]. Decision Awareness in Reinforcement Learning Workshop (DARL 2022), Baltimore, MD, USA (10 pages). Lien externe

Akrout, M., Farahmand, A.-M., Jarmain, T., & Abid, L. (octobre 2019). Improving Skin Condition Classification with a Visual Symptom Checker Trained Using Reinforcement Learning [Communication écrite]. 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen, China. Lien externe

Azar, M. G., Ahmadabadi, M. N., Farahmand, A.-M., & Araabi, B. N. (juillet 2006). Learning to Coordinate Behaviors in Soft Behavior-Based Systems Using Reinforcement Learning [Communication écrite]. IEEE International Joint Conference on Neural Network Proceedings (IJCNN 2006), Vancouver, BC, Canada. Lien externe

B

Bedaywi, M., Rakhsha, A., & Farahmand, A.-M. (août 2024). PID accelerated temporal difference algorithms [Communication écrite]. Reinforcement Learning Conference (RLC 2024), Amherst, Massachusetts, USA (25 pages). Lien externe

Bedaywi, M., & Farahmand, A.-M. (juillet 2021). PID accelerated temporal difference algorithms [Communication écrite]. 38th International Conference on Machine Learning (ICML 2021), En ligne / Online. Lien externe

Benosman, M., Farahmand, A.-M., & Xia, M. (2019). Learning-based iterative modular adaptive control for nonlinear systems. International Journal of Adaptive Control and Signal Processing, 33(2), 335-355. Lien externe

Benosman, M., Farahmand, A.-M., & Xia, M. (juillet 2016). Learning-based modular indirect adaptive control for a class of nonlinear systems [Communication écrite]. American Control Conference (ACC 2016), Boston, MA, USA. Lien externe

Bagnell, J. A., & Farahmand, A.-M. (décembre 2015). Learning positive functions in a Hilbert Space [Communication écrite]. 8th NIPS Workshop on Optimization for Machine Learning (OPT 2015), Montreal, Qc, Canada (10 pages). Lien externe

Bachman, P., Farahmand, A.-M., & Precup, D. (juin 2014). Sample-based approximate regularization [Communication écrite]. 31st International Conference on Machine Learning (ICML 2014), Beijing, China (9 pages). Lien externe

F

Farahmand, A.-M. (décembre 2019). Value function in frequency domain and the characteristic value iteration algorithm [Communication écrite]. 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, BC, Canada (12 pages). Lien externe

Farahmand, A.-M. (décembre 2018). Iterative value-aware model learning [Communication écrite]. 32th Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, Qc, Canada (12 pages). Lien externe

Farahmand, A.-M., Nabi, S., & Nikovski, D. N. (mai 2017). Deep reinforcement learning for partial differential equation control [Communication écrite]. American Control Conference (ACC 2017), Seattle, WA, USA. Lien externe

Farahmand, A.-M., Pourazarm, S., & Nikovski, D. N. (décembre 2017). Random projection filter bank for time series data [Communication écrite]. 31st annual Conference on Neural Information Processing systsems (NeurIPS 2017), Long Beauch, CA, USA (11 pages). Lien externe

Farahmand, A.-M., Barreto, A. M., & Nikovski, D. N. (avril 2017). Value-aware loss function for model-based reinforcement learning [Communication écrite]. 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017), Fort Lauderdale, FL, USA. Lien externe

Farahmand, A.-M., Nabi, S., Grover, P., & Nikovski, D. N. (décembre 2016). Learning to control partial differential equations: Regularized Fitted Q-Iteration approach [Communication écrite]. 55th IEEE Conference on Decision and Control (CDC 2016), Las Vegas, NV, USA (8 pages). Lien externe

Farahmand, A.-M., Ghavamzadeh, M., Szepesvari, C., & Mannor, S. (2016). Regularized policy iteration with non parametric function spaces. Journal of Machine Learning Research, 17(139), 66 pages. Lien externe

Farahmand, A.-M., Nikovski, D. N., Igarashi, Y., & Konaka, H. (février 2016). Truncated approximate dynamic programming with task-dependent terminal value [Résumé]. 30th AAAI Conference on Artificial Intelligence (AAAI 2016), Phoenix, Arizona, USA. Lien externe

Farahmand, A.-M. (décembre 2016). Value-aware loss function for model-based reinforcement learning [Communication écrite]. 13th European Workshop on Reinforcement Learning (EWRL 2016), Barcelona, Spain (8 pages). Lien externe

Farahmand, A.-M., Precup, D., Barreto, A. M., & Ghavamzadeh, M. (2015). Classification-Based Approximate Policy Iteration. IEEE Transactions on Automatic Control, 60(11), 2989-2993. Lien externe

Fard, M. M., Grinberg, Y., Farahmand, A.-M., Pineau, J., & Precup, D. (décembre 2013). Bellman error based feature generation using random projections on sparse spaces [Communication écrite]. 27th Conference on Neural Information Processing Systems (NeurIPS 2013), Las Vegas, NV, USA (9 pages). Lien externe

Farahmand, A.-M., Precup, D., Barreto, A. M. S., & Ghavamzadeh, M. (octobre 2013). CAPI : generalized classification-based approximate policy iteration [Communication écrite]. Multi-Disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2013), Princeton, NJ, USA. Non disponible

Farahmand, A.-M. (décembre 2016). Iterative value-aware model learning [Présentation]. Dans 13th European Workshop on Reinforcement Learning (EWRL 2016), Barcelona, Spain. Non disponible

Farahmand, A.-M., & Szepesvári, C. (2012). Regularized least-squares regression: Learning from a β-mixing sequence. Journal of Statistical Planning and Inference, 142(2), 493-505. Lien externe

Farahmand, A.-M., & Precup, D. (décembre 2012). Value pursuit iteration [Communication écrite]. 26th annual Conference on Neural Information Processing Systems (NeurIPS 2012), Lake Tahoe, Nevada, USA (9 pages). Lien externe

Farahmand, A.-M. (décembre 2011). Action-Gap phenomenon in reinforcement learning [Communication écrite]. 25th annual Conference on Neural Information Processing Systems (NeurIPS 2011), Granada, Spain (9 pages). Lien externe

Farahmand, A.-M., & Szepesvári, C. (2011). Model selection in reinforcement learning. Machine Learning, 85(3), 299-332. Lien externe

Farahmand, A.-M. (2011). Regularization in reinforcement learning [Thèse de doctorat, University of Alberta]. Lien externe

Farahmand, A.-M., Szepesvari, C., & Munos, R. (décembre 2010). Error propagation for approximate policy and value iteration [Communication écrite]. 24th annual Conference on Neural Information Processing Systems (NeurIPS 2010), Vancouver, CB, Canada (9 pages). Lien externe

Farahmand, A.-M., Ahmadabadi, M. N., Lucas, C., & Araabi, B. N. (2010). Interaction of Culture-Based Learning and Cooperative Co-Evolution and its Application to Automatic Behavior-Based System Design. IEEE Transactions on Evolutionary Computation, 14(1), 23-57. Lien externe

Farahmand, A.-M., Shademan, A., Jägersand, M., & Szepesvári, C. (mai 2009). Model-based and model-free reinforcement learning for visual servoing [Communication écrite]. IEEE International Conference on Robotics and Automation, Kobe, Japan. Lien externe

Farahmand, A.-M., Ghavamzadeh, M., Szepesvári, C., & Mannor, S. (juin 2009). Regularized Fitted Q-Iteration for planning in continuous-space Markovian decision problems [Communication écrite]. American Control Conference (ACC 2009), St. Louis, MO, USA. Lien externe

Farahmand, A.-M., Ghavamzadeh, M., Szepesvári, C., & Mannor, S. (juin 2008). Regularized Fitted Q-Iteration: Application to Planning [Communication écrite]. 8th European Workshop on Recent Advances in Reinforcement Learning (EWRL 2008), Villeneuve d'Ascq, France. Lien externe

Farahmand, A.-M., Ghavamzadeh, M., Szepesvari, C., & Mannor, S. (décembre 2008). Regularized policy iteration [Communication écrite]. 22th annual Conference on Neural Information Processing Systems (NeurIPS 2008), Vancouver, CB, Canada (8 pages). Lien externe

Farahmand, A.-M., Shademan, A., & Jägersand, M. (octobre 2007). Global visual-motor estimation for uncalibrated visual servoing [Communication écrite]. IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, CA, USA. Lien externe

Farahmand, A.-M., Szepesvári, C., & Audibert, J.-Y. (juin 2007). Manifold-adaptive dimension estimation [Communication écrite]. 24th international conference on Machine learning (ICML 2007), Corvalis, Oregon, USA. Lien externe

Farahmand, A.-M., & Yazdanpanah, M. J. (juillet 2006). Channel Assignment using Chaotic Simulated Annealing Enhanced Hopfield Neural Network [Communication écrite]. IEEE International Joint Conference on Neural Network Proceedings (IJCNN 2006), Vancouver, BC, Canada. Lien externe

Farahmand, A.-M. (2005). Learning and evolution in hierarchical behavior-based systems [Mémoire de maîtrise, University of Tehran]. Non disponible

Farahmand, A.-M. (2002). Calculating resonant frequencies of a metallic cavity using finite element method [Mémoire de maîtrise, K.N. Toosi University of Technology]. Non disponible

Farahmand, A.-M., Akhbari, R., & Tajvidi, M. (mars 2001). Evolving hidden Markov models [Communication écrite]. 4th Iranian Student Conference on Electrical Engineering (ISCEE 2001), Tehran, Iran. Non disponible

Farahmand, A.-M., & Mirmirani, E. (janvier 2000). Distributed genetic algorithms [Communication écrite]. 3rd Iranian Student Conference on Electrical Engineering (ISCEE 2000), Tehran, Iran. Non disponible

H

Hussing, M., Voelcker, C. A., Gilitschenski, I., Farahmand, A.-M., & Eaton, E. (août 2024). Dissecting Deep RL with high update ratios : combatting value divergence [Communication écrite]. Reinforcement Learning Conference (RLC 2024), Amherst, Massachusetts, USA (24 pages). Lien externe

Huang, D.-A., Farahmand, A.-M., Kitani, K. M., & Bagnell, J. A. (juin 2015). Approximate MaxEnt inverse optimal control [Communication écrite]. Reinforcement Learning and Decision Making (RLDM 2015), Edmonton, AB, CAnada (5 pages). Lien externe

Huang, D.-A., Farahmand, A.-M., Kitani, K. M., & Bagnell, J. A. (janvier 2015). Approximate maxent inverse optimal control and its application for mental simulation of human interactions [Résumé]. 29th AAAI Conference on Artificial Intelligence (AAAI 2015), Austin, Texas, USA. Lien externe

K

Kemertas, M., Farahmand, A.-M., & Jepson, A. D. (avril 2025). A truncated newton method for optimal transport [Communication écrite]. 13th International Conference on Learning Representations (ICLR 2025), Singapore, Singapore. Lien externe

Kastner, T., Erdogdu, M. A., & Farahmand, A.-M. (décembre 2023). Distributional model equivalence for risk-sensitive reinforcement learning [Communication écrite]. 37th Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, Louisiana, USA (22 pages). Lien externe

Kim, B., Farahmand, A.-M., Pineau, J., & Precup, D. (octobre 2013). Approximate policy iteration with demonstrated data [Communication écrite]. Multi-Disciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2013), Princeton, NJ, USA. Non disponible

Kim, B., Farahmand, A.-M., Pineau, J., & Precup, D. (décembre 2013). Learning from limited demonstration [Communication écrite]. 27th Conference on Neural Information Processing Systems (NeurIPS 2013), Las Vegas, NV, USA (9 pages). Lien externe

L

Liu, G., Adhikari, A. S., Farahmand, A.-M., & Poupart, P. (avril 2022). Learning object-oriented dynamics for planning form text [Affiche]. 10th International Conference on Learning Representations (ICLR 2022), En ligne / Online. Lien externe

Law, M. T., Snell, J., Farahmand, A.-M., Urtasun, R., & Zemel, R. S. (mai 2019). Dimensionality reduction for representing the knowledge of prababilistic models [Communication écrite]. 7th International Conference on Learning Representations (ICLR 2019), New Orleans, Louisiana (34 pages). Lien externe

M

Ma, A., Farahmand, A.-M., Pan, Y., Torr, P., & Gu, J. (septembre 2024). Improving Adversarial Transferability via Model Alignment [Communication écrite]. 18th European Conference on Computer Vision (ECCV 2024), Milan, Italy. Lien externe

Ma, A., Pan, Y., & Farahmand, A.-M. (2023). Understanding the robustness difference between stochastic gradient descent and adaptive gradient methods. Transactions on Machine Learning Research, 57 pages. Lien externe

N

Nikovski, D. N., Zhu, Y., & Farahmand, A.-M. (2020). Methods and systems for discovery of prognostic subsequences in time series. (Brevet no US10712733). Lien externe

P

Pirmorad, E., Mansouri, F., & Farahmand, A.-M. (décembre 2024). Deep reinforcement learning for online control of stochastic partial differenctial equations [Communication écrite]. 38th Conference on Neural Information Processing Systems (NeurIPS 2024), Vancouver, BC, Canada (6 pages). Lien externe

Pan, Y., Mei, J., Farahmand, A.-M., White, M., Yao, H., Rohani, M., & Luo, J. (août 2022). Understanding and mitigating the limitations of prioritized experience replay [Communication écrite]. 38th Conference on Uncertainty in Artificial Intelligence (UIA 2022), Eindhoven, The Netherlands. Lien externe

Pan, Y., Mei, J., & Farahmand, A.-M. (avril 2020). Frequency-based search-control in Dyna [Communication écrite]. 8th International Conference on Learning Representations (ICLR 2020), En ligne / Online (21 pages). Lien externe

Pan, Y., Imani, E., Farahmand, A.-M., & White, M. (décembre 2020). An implicit function learning approach for parametric modal regression [Communication écrite]. 34th Conference on Neural Information Processing Systems (NeurIPS 2020), En ligne / Online (11 pages). Lien externe

Pan, Y., Yao, H., Farahmand, A.-M., & White, M. (août 2019). Hill climbing on value estimates for search-control in Dyna [Communication écrite]. 28th International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China. Non disponible

Pan, Y., Farahmand, A.-M., White, M., Nabi, S., Gover, P., & Nikovski, D. (juillet 2018). Reinforcement learning with function-valued action spaces for partial differential equation control [Communication écrite]. 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden. Lien externe

Pourazarm, S., Farahmand, A.-M., & Nikovski, D. N. (octobre 2017). Fault detection and prognosis of time series data with random projection filter bank [Communication écrite]. 9th annual Conference of the Prognostics and Health Management Society (PHM 2017), St. Petersburg, FL, USA (11 pages). Lien externe

R

Rakhsha, A., Kemertas, M., Ghavamzadeh, M., & Farahmand, A.-M. (mai 2024). Maximum entropy model correction in reinforcement learning [Présentation]. Dans 12th International Conference on Learning Representations (ICLR 2024), Vienna, Austria. Lien externe

Rakhsha, A., Wang, A., Ghavamzadeh, M., & Farahmand, A.-M. (décembre 2022). Operator splitting value iteration [Présentation]. Dans 37th annual Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, Louisiana, USA (13 pages). Lien externe

S

Shademan, A., Farahmand, A.-M., & Jägersand, M. (mai 2010). Robust Jacobian estimation for uncalibrated visual servoing [Communication écrite]. IEEE International Conference on Robotics and Automation (ICRA 2010), Anchorage, AK, USA. Lien externe

Shademan, A., Farahmand, A.-M., & Jägersand, M. (mai 2009). Towards Learning Robotic Reaching and Pointing: An Uncalibrated Visual Servoing Approach [Communication écrite]. Canadian Conference on Computer and Robot Vision (CCRV 2009), Kelowna, BC, Canada. Lien externe

V

Voelcker, C. A., Kastner, T., Gilitschenski, I., & Farahmand, A.-M. (août 2024). When does self-prediction help? Understanding auxiliary tasks in reinforcement learning [Communication écrite]. Reinforcement Learning Conference (RLC 2024), Amherst, Massachusetts, USA (31 pages). Lien externe

Voelcker, C. A., Liao, V., Garg, A., & Farahmand, A.-M. (avril 2022). Value gradient weighted model-based reinforcement learning [Affiche]. 10th International Conference on Learning Representations (ICLR 2022), En ligne / Online. Lien externe

Liste produite: Fri Dec 5 04:41:13 2025 EST.