Up a level |
This graph maps the connections between all the collaborators of {}'s publications listed on this page.
Each link represents a collaboration on the same publication. The thickness of the link represents the number of collaborations.
Use the mouse wheel or scroll gestures to zoom into the graph.
You can click on the nodes and links to highlight them and move the nodes by dragging them.
Hold down the "Ctrl" key or the "⌘" key while clicking on the nodes to open the list of this person's publications.
Bilic, P., Christ, P., Li, H. B., Vorontsov, E., Ben-Cohen, A., Kaissis, G., Szeskin, A., Jacobs, C., Mamani, G. E. H., Chartrand, G., Lohöfer, F., Holch, J. W., Sommer, W., Hofmann, F., Hostettler, A., Lev-Cohain, N., Drozdzal, M., Amitai, M. M., Vivanti, R., ... Menze, B. (2023). The Liver Tumor Segmentation Benchmark (LiTS). Medical Image Analysis, 84, 102680 (24 pages). External link
Cheng, P. M., Montagnon, E., Yamashita, R., Pan, I., Cadrin-Chênevert, A., Romero, F. P., Chartrand, G., Kadoury, S., & Tang, A. (2021). Deep Learning: An Update for Radiologists. RadioGraphics, 41(5), 1427-1445. External link
Chartrand, G., Cheng, P. M., Vorontsov, E., Drozdzal, M., Turcotte, S., Pal, C. J., Kadoury, S., & Tang, A. (2017). Deep Learning: A Primer for Radiologists. RadioGraphics, 37(7), 2113-2131. External link
Drozdzal, M., Chartrand, G., Vorontsov, E., Shakeri, M., Di Jorio, L., Tang, A., Romero, A., Bengio, Y., Pal, C. J., & Kadoury, S. (2018). Learning normalized inputs for iterative estimation in medical image segmentation. Medical Image Analysis, 44, 1-13. External link
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. J. (2016, October). The Importance of Skip Connections in Biomedical Image Segmentation [Paper]. 2nd International Workshop on Deep Learning in Medical Image Analysis (DLMIA 2016), held in conjunction with MICCAI 2016, Athens, Greece. External link
Gotra, A., Sivakumaran, L., Chartrand, G., Vu, K.-N., Vandenbroucke-Menu, F., Kauffmann, C., Kadoury, S., Gallix, B., de Guise, J. A., & Tang, A. (2017). Liver segmentation: indications, techniques and future directions. Insights into Imaging, 8(4), 377-392. Available