<  Retour au portail Polytechnique Montréal

Documents dont l'auteur est "Chandar, Sarath"

Monter d'un niveau
Pour citer ou exporter [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Nombre de documents: 9

Zayed, A., Mordido, G., Shabanian, S., Baldini, I., & Chandar, S. (février 2024). Fairness-Aware Structured Pruning in Transformers [Communication écrite]. 38th AAAI Conference on Artificial Intelligence (AAAI 2024). Publié dans Proceedings of the AAAI Conference on Artificial Intelligence, 38(20). Lien externe

Govindarajan, P., Miret, S., Rector-Brooks, J., Phielipp, M., Rajendran, J., & Chandar, S. (2024). Learning conditional policies for crystal design using offline reinforcement learning. Digital Discovery, 3(4), 769-785. Lien externe

Clouâtre, L., Zouaq, A., & Chandar, S. (mai 2024). MVP: Minimal Viable Phrase for Long Text Understanding [Communication écrite]. Joint 30th International Conference on Computational Linguistics and 14th International Conference on Language Resources and Evaluation (LREC-COLING 2024), Hybrid, Torino, Italy. Lien externe

Theriault-Lauzier, P., Cobin, D., Tastet, O., Langlais, E. L., Taji, B., Kang, G., Chong, A.-Y., So, D., Tang, A., Gichoya, J. W., Chandar, S., Déziel, P.-L., Hussin, J. G., Kadoury, S., & Avram, R. (2024). A responsible framework for applying artificial intelligence on medical images and signals at the point-of-care: the PACS-AI platform. Canadian Journal of Cardiology, 025 (39 pages). Lien externe

Prato, G., Huang, J., Parthasarathi, P., Sodhani, S., & Chandar, S. (décembre 2023). EpiK-Eval: Evaluation for Language Models as Epistemic Models [Résumé]. Conference on Empirical Methods in Natural Language Processing, Singapore, Singapore. Lien externe

Kazemnejad, A., Rezagholizadeh, M., Parthasarathi, P., & Chandar, S. (2023). Measuring the Knowledge Acquisition-Utilization Gap in Pretrained Language Models. Findings of the Association for Computational Linguistics: EMNLP, 4305-4319. Lien externe

Clouâtre-Latraverse, L., Parthasarathi, P., Zouaq, A., & Chandar, S. (2022). Detecting Languages Unintelligible to Multilingual Models through Local Structure Probes. Findings of the Association for Computational Linguistics: EMNLP 2022, 5375-5396. Lien externe

Parthasarathi, P., Pineau, J., & Chandar, S. (juillet 2021). Do Encoder Representations of Generative Dialogue Models have sufficient summary of the Information about the task ? [Communication écrite]. 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, Singapore and Online. Lien externe

Sankar, C., Subramanian, S., Pal, C. J., Chandar, S., & Bengio, Y. (juillet 2019). Do neural dialog systems use the conversation history effectively? An empirical study [Communication écrite]. 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy. Lien externe

Liste produite: Fri Dec 20 04:33:42 2024 EST.