<  Retour au portail Polytechnique Montréal

A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System

Amir Haider, Muhammad Adnan Khan, Abdur Rehman, MuhibUr Rahman et Hyung Seok Kim

Article de revue (2021)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (686kB)
Afficher le résumé
Cacher le résumé

Abstract

In recent years, cybersecurity has attracted significant interest due to the rapid growth of the Internet of Things (IoT) and the widespread development of computer infrastructure and systems. It is thus becoming particularly necessary to identify cyber-attacks or irregularities in the system and develop an efficient intru- sion detection framework that is integral to security. Researchers have worked on developing intrusion detection models that depend on machine learning (ML) methods to address these security problems. An intelligent intrusion detection device powered by data can exploit artificial intelligence (AI), and especially ML, techniques. Accordingly, we propose in this article an intrusion detection model based on a Real-Time Sequential Deep Extreme Learning Machine Cyber- security Intrusion Detection System (RTS-DELM-CSIDS) security model. The proposed model initially determines the rating of security aspects contributing to their significance and then develops a comprehensive intrusion detection frame- work focused on the essential characteristics. Furthermore, we investigated the feasibility of our proposed RTS-DELM-CSIDS framework by performing dataset evaluations and calculating accuracy parameters to validate. The experimental findings demonstrate that the RTS-DELM-CSIDS framework outperforms con- ventional algorithms. Furthermore, the proposed approach has not only research significance but also practical significance.

Mots clés

Security; DELM; intrusion detection system; machine learning

Sujet(s): 2700 Technologie de l'information > 2700 Technologie de l'information
Département: Département de génie électrique
Organismes subventionnaires: National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT), Strengthening R&D Capability Program of Sejong University
Numéro de subvention: 2019R1A4A1023746, 2019R1F1A1060799
URL de PolyPublie: https://publications.polymtl.ca/9458/
Titre de la revue: Computers, Materials & Continua (vol. 66, no 2)
Maison d'édition: Tech Science Press
DOI: 10.32604/cmc.2020.013910
URL officielle: https://doi.org/10.32604/cmc.2020.013910
Date du dépôt: 13 sept. 2023 10:53
Dernière modification: 25 sept. 2024 21:14
Citer en APA 7: Haider, A., Adnan Khan, M., Rehman, A., Rahman, M.U., & Seok Kim, H. (2021). A Real-Time Sequential Deep Extreme Learning Machine Cybersecurity Intrusion Detection System. Computers, Materials & Continua, 66(2), 1785-1798. https://doi.org/10.32604/cmc.2020.013910

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document