Aamir Khan, Weidong Jin, Amir Haider, MuhibUr Rahman et Desheng Wang
Article de revue (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (4MB) |
Abstract
Image denoising is a challenging task that is essential in numerous computer vision and image processing problems. This study proposes and applies a generative adversarial network-based image denoising training architecture to multiple-level Gaussian image denoising tasks. Convolutional neural network-based denoising approaches come across a blurriness issue that produces denoised images blurry on texture details. To resolve the blurriness issue, we first performed a theoretical study of the cause of the problem. Subsequently, we proposed an adversarial Gaussian denoiser network, which uses the generative adversarial network-based adversarial learning process for image denoising tasks. This framework resolves the blurriness problem by encouraging the denoiser network to find the distribution of sharp noise-free images instead of blurry images. Experimental results demonstrate that the proposed framework can effectively resolve the blurriness problem and achieve significant denoising efficiency than the state-of-the-art denoising methods.
Mots clés
image denoising; residual learning image denoising (RLID); direct image denoising (DID); convolutional neural networks (CNNs); generative adversarial network (GAN)
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2700 Technologie de l'information > 2708 Traitement d'images et traitement vidéo |
---|---|
Département: | Département de génie électrique |
Organismes subventionnaires: | National Natural Science Foundation of China |
Numéro de subvention: | 61134002 |
URL de PolyPublie: | https://publications.polymtl.ca/9432/ |
Titre de la revue: | Sensors (vol. 21, no 9) |
Maison d'édition: | MDPI |
DOI: | 10.3390/s21092998 |
URL officielle: | https://doi.org/10.3390/s21092998 |
Date du dépôt: | 02 sept. 2022 14:18 |
Dernière modification: | 27 sept. 2024 22:17 |
Citer en APA 7: | Khan, A., Jin, W., Haider, A., Rahman, M.U., & Wang, D. (2021). Adversarial Gaussian Denoiser for Multiple-Level Image Denoising. Sensors, 21(9), 30 pages. https://doi.org/10.3390/s21092998 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions