Ido Amihai, Arzam Kotriwala, Diego Pareschi, Moncef Chioua et Ralf Gitzel
Communication écrite (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (605kB) |
Abstract
In this paper, we describe a machine learning approach for predicting machine health indicators with a large time horizon into the future. The approach uses state-of-the-art neural network architectures for sequence modelling and can incorporate numerical-sensor and categorical data using entity embeddings. Moreover, we describe an unsupervised labelling approach where classes are generated using continuous sensor values in the training data and a clustering algorithm. To validate our approach, we performed an ablation study to verify the effectiveness of each of our model’s components. In this context, we show that entity embeddings can be used to generate effective features from categorical inputs, that state-of-the-art models, while originally developed for a different set of problems, can nonetheless be transferred to perform industrial asset health classification and provide a performance boost over simpler networks that have been traditionally used, such as relatively shallow recurrent or convolutional networks. Taken together, we present a machine health monitoring system that can accurately generate asset health predictions. This system can incorporate both numerical and categorical information, the current state-of-the-art for sequence modelling, and generate labels in an unsupervised fashion when explicit labels are unavailable.
Mots clés
neural networks; time series; sequence modelling; machine health monitoring; predictive maintenance
Sujet(s): |
1800 Génie chimique > 1800 Génie chimique 2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2509 Systèmes de contrôle 2700 Technologie de l'information > 2713 Algorithmes |
---|---|
Département: | Département de génie chimique |
Organismes subventionnaires: | ABB |
URL de PolyPublie: | https://publications.polymtl.ca/9386/ |
Nom de la conférence: | 7th International Conference on Time Series and Forecasting (ITISE 2021) |
Lieu de la conférence: | Gran Canaria, Spain |
Date(s) de la conférence: | 2021-07-19 - 2021-07-21 |
Titre de la revue: | Engineering Proceedings (vol. 5, no 1) |
Maison d'édition: | MDPI |
DOI: | 10.3390/engproc2021005007 |
URL officielle: | https://doi.org/10.3390/engproc2021005007 |
Date du dépôt: | 16 août 2023 12:23 |
Dernière modification: | 28 sept. 2024 08:21 |
Citer en APA 7: | Amihai, I., Kotriwala, A., Pareschi, D., Chioua, M., & Gitzel, R. (juillet 2021). Using learned health indicators and deep sequence models to predict industrial machine health [Communication écrite]. 7th International Conference on Time Series and Forecasting (ITISE 2021), Gran Canaria, Spain (9 pages). Publié dans Engineering Proceedings, 5(1). https://doi.org/10.3390/engproc2021005007 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions