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Abstract: In this paper, we describe a machine learning approach for predicting machine health
indicators with a large time horizon into the future. The approach uses state-of-the-art neural network
architectures for sequence modelling and can incorporate numerical-sensor and categorical data
using entity embeddings. Moreover, we describe an unsupervised labelling approach where classes
are generated using continuous sensor values in the training data and a clustering algorithm. To
validate our approach, we performed an ablation study to verify the effectiveness of each of our
model’s components. In this context, we show that entity embeddings can be used to generate
effective features from categorical inputs, that state-of-the-art models, while originally developed
for a different set of problems, can nonetheless be transferred to perform industrial asset health
classification and provide a performance boost over simpler networks that have been traditionally
used, such as relatively shallow recurrent or convolutional networks. Taken together, we present a
machine health monitoring system that can accurately generate asset health predictions. This system
can incorporate both numerical and categorical information, the current state-of-the-art for sequence
modelling, and generate labels in an unsupervised fashion when explicit labels are unavailable.

Keywords: neural networks; time series; sequence modelling; machine health monitoring; predic-
tive maintenance

1. Introduction

Modern machine health monitoring systems (MHMS) owe much of their recent success
to advances in machine learning algorithms, sensing technologies, and computational
power [1–5]. Such systems make use of historical data collected from the monitored
equipment, which are used to train machine learning (ML) models for evaluating their
health and performance [1], in either a diagnostic or prognostic way, e.g., by remaining
useful life estimation (RUL; e.g., [4,6]).

Historically, MHMS were based on ML algorithms that require hand crafted features.
However, the utility of such models was limited due to the required domain expertise
and inability to cover all spectrum effects, especially nonlinear dependencies in time and
domain-specific effects [1]. A mitigation strategy for this problem is to use neural networks
(NN), which do not require handcrafted features and can be trained using only the input
data (e.g., [1,7–11]).

In the context of sequential data, several NN architecture-types have typically been
applied based on their proficiency in learning the temporal dynamic behaviours of systems.
In this respect, recurrent neural networks (RNNs) have been extensively used to model
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sequential data [12]. Although different variants exist, an RNN is normally constructed as
an NN with a feedback loop from the previous hidden layer of the network to the next:

h(t) = f(h(t − 1), X(t); θ), (1)

where h(t) and X(t) are the hidden states and inputs to the network at time t, and θ is the
network parameters.

Although RNNs are typically difficult to train due to issues with vanishing and
exploding gradients [13], this can be mitigated by using gate functions that regulate the
information that passes through the network. This is usually done through long short-term
memory (LSTM) or gated recurrent units (GRU) [12], which, instead of the ordinary RNN
transition function, involve more complex functions that incorporate gate structures that
help regulate the information that passes through the network [14,15]. Other NNs used to
model sequential data that are based on RNNs are echo state networks (ESN) [16,17]. ESNs
mitigate the vanishing gradient problem by eliminating the need to compute the gradient
for the hidden layers of the NN using a sparsely connected RNN called a “reservoir”,
where the weights are not learned via gradient descent [18].

In addition to RNN based architectures, convolutional NNs (CNNs) have also been
used for sequence modelling. CNNs utilize convolutional operations, which are sliding
filters that are applied over the data and enable the NN to extract time-invariant nonlinear
features [19]. Recently it was demonstrated that CNNs coupled with residual connections,
which are connections between an NN layer and a layer it is not directly connected to,
can result in highly accurate models for sequential data [19]. An example of this type of
architecture is the inception-time network [19], which is one of the architectures we imple-
mented in this research and was inspired by the Inception-v4 architecture [20]. Crucially, it
contains “Inception Modules”, where the core idea is to simultaneously apply multiple
convolutional filters of varying dimensions to the input [21].

Finally, the relatively new transformer architecture-type has also been successfully uti-
lized for sequence modelling (e.g., [22]). These models rely on self-attention mechanisms to
model temporal dynamics [23], the most common being the “scaled dot-product attention”,
“dot-product attention”, and “additive attention” [23]. The scaled dot-product attention is
computed via the following equation:

Attention(Q,K,V) = softmax((QKˆT)/
√

(d_k))·V, (2)

where matrices Q, K, and V are generated for each input, and where dk is the dimension of
Q, and K. Dot-product attention is identical except that the scaling factor

√
(d_k) is not used,

and additive attention is computed using a feed-forward NN with a single hidden layer [23].
Although transformers were developed for natural language processing (NLP) applications
(e.g., German-English translations), they can be adapted for sequential numerical data, in
the simplest case by replacing the embedding layers with fully-connected layers or other
layer types that can transform numerical data (e.g., time delay embeddings [22]). Other
approaches used for sequence modelling include large memory storage retrieval NNs [9],
stacked denoising autoencoders [11], and deep belief networks [8].

Another important issue that arises when developing MHMS stems from the fact that
they are typically developed using supervised learning, where ML models are trained
to classify the health status of assets based on labelled training examples with a known
health status. However, often the relationship between available data and asset health is
not known in advance (i.e., the data is unlabelled) and must be determined using statistical,
ML, or other methods. To address this issue, we developed an unsupervised approach,
where sensor data from the training set was used to generate clusters that represent the
asset health status [24].

Currently, the state of the art (SOTA) for processing sensor data are architectures
for sequential data modelling such as Res-CNN [25], LSTM fully-convolutional NN [26],
inception-time [19], and ResNet [18]. The models were shown to work well on many



Eng. Proc. 2021, 5, 7 3 of 9

sequence learning tasks (e.g., [19,23], see [18] for a review). Additionally, these new
methods have already been applied in the field of predictive maintenance. For example,
ResNet has been used on wind turbine data [27] and bearing data [28] to predict faults.
Res-CNN has been applied to motor data [29], and fully-convolutional LSTM used on
aircraft engine data [30]. However, to our knowledge, no paper has compared all of the
above methods on a single dataset.

In this paper, we describe an ML approach that was used to predict machine health
with a large time horizon. Due to the nature of our application, we used a two-week horizon,
but the approach can be generalized to other horizons as well. To process the sensor data,
we compare all the SOTA architectures named above. Moreover, we also describe the
results obtained using a simpler NN baseline model based on bidirectional GRU cells
(BiGRU) [24]. Finally, we compared these NN approaches to a random-forest (RF) model,
which is a very popular ML approach not based on NNs that performs well on a variety of
tasks and does not require special processing for categorical variables [31,32]. Additionally,
the inputs to the model are both continuous sensor data and categorical metadata, and we
use K-Means clustering to incorporate prior knowledge of the distribution of the predicted
variable into our model and generate the predicted variable, as we first described in [24].

We first show that this approach can provide superior predictions of machine health
in comparison to a similar model that only incorporates sensor data, similarly to what we
previously reported [24]. Moreover, we demonstrate the superiority of SOTA networks
over the simpler BiGRU architecture as well as a non-NN approach (RF) for classifying
industrial asset health.

2. Methods
2.1. Data

For a more detailed account, see [24]. Briefly, the data consisted of both sensor data
collected approximately every 6 h and categorical metadata, over a period of approximately
2.5 years from 51 vibration sensors. The data were divided into training, validation, and
test sets, so that approximately the first 2 years of data were used for training and the
final 0.5 years of data was split between the validation and test datasets through stratified
random shuffling based on the distribution of the predicted variable (defined below). Note
that due to important data privacy concerns specified by the owner of the data, some
aspects of the data were transformed to maintain data privacy.

2.2. The Predicted Variable

The predicted variable was determined based on the distribution of the sensor data of
the training set, as well as practical specifications provided by the owner of the data and
only very basic domain knowledge. Specifically, the data owner requested predictions of
the systems’ health status two weeks into the future. The full method is described in [24],
but in brief, we integrated prior knowledge of the predicted values into the architecture
of our model so that instead of predicting its value directly, we computed a set of clusters
based on its distribution in the training set. We then labelled all our predicted variables
based on the nearest cluster centroid calculated through the K-Means algorithm. Since our
training data distribution resembled a bimodal distribution, suggesting 2 distinct types of
behaviour (see Figure 1), we used the nearest cluster centroid of two possible clusters as
the predicted variable.
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2.3. Modelling

In the current research, we tested several deep NN architectures for modelling the
sensor data (i.e., sequence models). The first was a BiGRU, which we used as a baseline
for comparison to different model architectures, and which we also used in a previous
study [24]. We compared this relatively simple but popular architecture to several SOTA
algorithms as well as a non-NN based approach (RF). First, we trained a transformer
model that was slightly modified from [23], where it was used for English to German
translation tasks so as to be suitable for sequential numerical data, mainly by replacing its
embedding layers with fully connected layers. This stresses the notion that deep learning
models that are developed to solve a certain task can often be rather straightforwardly
adapted to solve a different task, even when the similarity between the tasks is not apparent.
Additional SOTA algorithms that were used were Res-CNN [25], LSTM fully-convolutional
NN [26], inception-time [19] and ResNet [18]. The hyperparameters of the models were
selected by examining the loss function value on the validation set, and the models were
tuned using the logistic loss-function, which is the most commonly used loss-function for
binary-classification problems and is almost universally applied [33]:

L = − 1
N ∑N

i ∑M
j yij log

(
pij

)
, (3)

where p is the predicted class and y is the true class label.
In addition, we were provided with metadata in the form of categorical variables

that identify important aspects in the equipment, such as its specific type. To incorporate
categorical variables in ML models, they are often transformed using one-hot encoding
(OHE), where k new binary features are created for k different categories. However, as we
stated in [24] when the cardinality of the features is high, OHE requires a large number of
computational resources. Additionally, OHE treats the values of categorical variables as
independent of each other and often ignores information about the relationships between
them [34]. In order to circumvent these issues, we used the categorical metadata to learn
entity embeddings, where each categorical variable is mapped to a fixed-size vector space,
with parameters that are learned by the model (see [24,34,35]).

The overall modelling approach is presented in Figure 2. The embeddings were
concatenated to the outputs of the sequence model component and fed to an FC layer with
a rectified linear unit (ReLU) activation function. The outputs of this layer can then be fed
to an additional FC layer with a Sigmoid activation function (i.e., the logistic function).
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A constant learning rate of 0.001 was used with the Adam optimizer, and models were
trained with early stopping, i.e., until we observed an error increase on the validation
set [36].
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The models were compared using two very popular classification metrics: the F1-score
and the Matthews correlation coefficient (MCC) [37].

3. Results

All of the analyses were done using the Python programming language [38]. To
assess the importance of the various model components, we performed an ablation study
where we systematically removed the main components of our model and observed
how it affected performance. In this respect, we compared our approach of using entity
embeddings with the BiGRU model to the same model without the embedding inputs.
Moreover, we tested a model where the penultimate FC layer was also removed (the
first layer of the “fully connected layers” component in Figure 2). Finally, we compared
the performance of various sequence models (sequence model component in Figure 2),
including SOTA sequence models, as well as an RF model.

The performance of the experimental conditions is summarized in Table 1. The base-
line BiGRU model generated an F1 score of 0.876 and an MCC score of 0.747. When entity
embeddings were not included in the model, both F1 and MCC scores dropped. Similar
results were obtained when the penultimate FC layer was removed, and the concatenated
inputs from the BiGRU and embeddings were fed directly into the output layer of the
model. Moreover, a model consisting only of the BiGRU component of the model achieved
a similar performance, suggesting that the additional FC layer might not be needed when
the additional metadata inputs are not included. When SOTA models were used instead
of the BiGRU baseline, the model demonstrated an increased performance on both F1,
t (4) = 4.18, p < 0.01, and MCC, t (4) = 5.43, p < 0.01. RF performed similarly to the BiGRU
baseline on the F1 and MCC metrics. However, it also showed a strong bias towards pre-
dicting Class 1 (98.59% vs. 81.29% accuracy rates for Class 1 and Class 2, respectively). The
F1 differences between SOTA algorithms and RF were marginally significant, t (4) = 2.03,
p = 0.056, and statistically significant when considering only CNN based SOTA algorithms
(e.g., Res-CNN, FCN, inception-time and ResNet), which performed best on our task,
t (3) = 4.93, p < 0.01. MCC differences between CNN based SOTA algorithms and RF were
marginally significant after correcting for multiple comparisons, t (3) = 2.55, p = 0.04.
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Table 1. Model Classification Performance.

Model Class 1 Accuracy Class 2 Accuracy Overall Accuracy F1 MCC

BiGRU 85.05 89.6 87.33 0.876 0.747

BiGRU, no entity embed-dings 78.06 92.7 85.4 0.864 0.715

BiGRU, no penultimate FC 78.2 91.8 85.0 0.860 0.707

Only BiGRU 78.36 91.1 84.7 0.856 0.7

Transformer 90.90 85.78 90.26 0.880 0.768

Res-CNN 94.10 87.38 93.26 0.904 0.817

FCN 93.87 90.24 93.42 0.919 0.842

Inception-time 94.63 87.76 93.77 0.909 0.826

ResNet 95.68 85.7 94.43 0.902 0.818

Random-forests 98.59 81.29 89.47 0.890 0.811

4. Discussion

Although fully connected deep learning models have been used in MHMS for many
years [39–42], the use of NN approaches that are specialized for sequence models is a
relatively recent research trend [43,44]. This is somewhat surprising considering that most
industrial data are sensor data, which is by nature sequential. Notably, several studies
used recurrent NNs to estimate RUL [45–49] or performance degradation [7,50–52]. Other
studies have applied CNN models after transforming sensor data to 2-dimensional, similar
to image data that are typically used by CNNs, in order to classify machine faults [53,54]
or RUL [55,56]. Yet another research direction has been to transform the sensor signals
to the frequency domain before applying CNNs for machine fault diagnosis [21,57–59],
while other studies straightforwardly applied CNNs for monitoring the health status of
industrial assets using the raw sensor data as the input [60–64]. Importantly, none of
the previous studies compared several SOTA sequence models for MHMS on a single
dataset [44,65–68], and the current study was the first to apply them in this context. Such
models are significantly deeper and computationally more complex than those that were
used in most previous studies and were originally developed for applications unrelated to
machine health monitoring (e.g., NLP [23]).

The MHMS described in this paper can incorporate SOTA models as well as combine
sequential and non-sequential inputs to obtain more accurate predictions, as when using
each input type in isolation. Its effectiveness was verified through an ablation study where
the main components of the model were systematically removed or altered. Moreover,
the proposed MHMS makes use of the predicted variable distribution to derive classes
for prediction using unsupervised clustering (see [24]). Such class derivation is especially
important in applications where the theoretical variable, e.g., asset health distribution, is
not known directly. Our proposed algorithm can be used to derive a proxy of the theoretical
variable using a different variable for which the distribution in the training data can be
estimated. Moreover, we tested the various SOTA algorithms on our data. While such
models, e.g., with a single or few LSTM or GRU layer(s), can work relatively well on
industrial tasks, we found that using SOTA models resulted in increased performance
on the metrics that we measured, especially CNN based models. What this suggests is
that while industrial data might contain important unique features, e.g., features that are
representative of industrial asset health might only be discoverable in these data, the SOTA
models developed for seemingly unrelated data and tasks are nonetheless also transferrable
to these data. This is likely because SOTA sequential models are highly proficient at learning
general temporal dynamic behaviour and hence can also be applied here.

In conclusion, we have proposed an MHMS that can handle both numeric and categor-
ical data, can be used in conjunction with SOTA NNs and can be used to predict the health
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status of industrial assets even when a health status variable is not explicitly provided.
Such a system can serve as an integral component of full-fledged predictive maintenance
software systems to provide increased automation for asset health inspection.
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