<  Retour au portail Polytechnique Montréal

Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 1018: brain tissue heterogeneity

A. S. Kucheryavenko, N. V. Chernomyrdin, A. A. Gavdush, A. I. Alekseeva, P. V. Nikitin, I. N. Dolganova, P. A. Karalkin, A. S. Khalansky, I. E. Spektor, Maksim A. Skorobogatiy, V. V. Tuchin et K. I. Zaytsev

Article de revue (2021)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: OSA Open Access Publishing Agreement
Télécharger (8MB)
Afficher le résumé
Cacher le résumé

Abstract

Terahertz (THz) technology holds strong potential for the intraoperative label-free diagnosis of brain gliomas, aimed at ensuring their gross-total resection. Nevertheless, it is still far from clinical applications due to the limited knowledge about the THz-wave–brain tissue interactions. In this work, rat glioma model 101.8 was studied ex vivo using both the THz pulsed spectroscopy and the 0.15λ-resolution THz solid immersion microscopy (λ is a free-space wavelength). The considered homograft model mimics glioblastoma, possesses heterogeneous character, unclear margins, and microvascularity. Using the THz spectroscopy, effective THz optical properties of brain tissues were studied, as averaged within the diffraction-limited beam spot. Thus measured THz optical properties revealed a persistent difference between intact tissues and a tumor, along with fluctuations of the tissue response over the rat brain. The observed THz microscopic images showed heterogeneous character of brain tissues at the scale posed by the THz wavelengths, which is due to the distinct response of white and gray matters, the presence of different neurovascular structures, as well as due to the necrotic debris and hemorrhage in a tumor. Such heterogeneities might significantly complicate delineation of tumor margins during the intraoperative THz neurodiagnosis. The presented results for the first time pose the problem of studying the inhomogeneity of brain tissues that causes scattering of THz waves, as well as the urgent need to use the radiation transfer theory for describing the THz-wave — tissue interactions.

Sujet(s): 1900 Génie biomédical > 1900 Génie biomédical
1900 Génie biomédical > 1901 Technologie biomédicale
3100 Physique > 3100 Physique
3100 Physique > 3110 Optique (voir aussi Dispositifs photoniques, 2505)
Département: Département de génie physique
Organismes subventionnaires: Russian Foundation for Basic Research, Russian Science Foundation
Numéro de subvention: 18-29-02060, 17-79-20346
URL de PolyPublie: https://publications.polymtl.ca/9355/
Titre de la revue: Biomedical Optics Express (vol. 12, no 8)
Maison d'édition: Optica Publishing Group
DOI: 10.1364/boe.432758
URL officielle: https://doi.org/10.1364/boe.432758
Date du dépôt: 07 sept. 2023 10:02
Dernière modification: 09 avr. 2024 20:02
Citer en APA 7: Kucheryavenko, A. S., Chernomyrdin, N. V., Gavdush, A. A., Alekseeva, A. I., Nikitin, P. V., Dolganova, I. N., Karalkin, P. A., Khalansky, A. S., Spektor, I. E., Skorobogatiy, M. A., Tuchin, V. V., & Zaytsev, K. I. (2021). Terahertz dielectric spectroscopy and solid immersion microscopy of ex vivo glioma model 1018: brain tissue heterogeneity. Biomedical Optics Express, 12(8), 5272-5289. https://doi.org/10.1364/boe.432758

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document