Irving Muller Rodrigues, Daniel Aloise, Eraldo Rezende Fernandes et Michel Dagenais
Communication écrite (2020)
Un lien externe est disponible pour ce documentAbstract
Bug tracking systems (BTS) are widely used in software projects. An important task in such systems consists of identifying duplicate bug reports, i.e., distinct reports related to the same software issue. For several reasons, reporting bugs that have already been reported is quite frequent, making their manual triage impractical in large BTSs. In this paper, we present a novel deep learning network based on soft-attention alignment to improve duplicate bug report detection. For a given pair of possibly duplicate reports, the attention mechanism computes interdependent representations for each report, which is more powerful than previous approaches. We evaluate our model on four well-known datasets derived from BTSs of four popular open-source projects. Our evaluation is based on a ranking-based metric, which is more realistic than decision-making metrics used in many previous works. Achieved results demonstrate that our model outperforms state-of-the-art systems and strong baselines in different scenarios. Finally, an ablation study is performed to confirm that the proposed architecture improves the duplicate bug reports detection.
Mots clés
bug tracking systems; duplicate bug report detection; deep learning; attention mechanism
Sujet(s): |
2700 Technologie de l'information > 2706 Génie logiciel 2700 Technologie de l'information > 2720 Logiciel de systèmes informatiques |
---|---|
Département: | Département de génie informatique et génie logiciel |
Organismes subventionnaires: | GRSNG / NSERC, Ericsson, Ciena, EffciOS |
ISBN: | 9781450375177 |
URL de PolyPublie: | https://publications.polymtl.ca/9345/ |
Nom de la conférence: | 17th International Conference on Mining Software Repositories (MSR 2020) |
Lieu de la conférence: | Seoul, Republic of Korea |
Date(s) de la conférence: | 2020-06-29 - 2020-06-30 |
Maison d'édition: | ACM |
DOI: | 10.1145/3379597.3387470 |
URL officielle: | https://doi.org/10.1145/3379597.3387470 |
Date du dépôt: | 06 sept. 2023 13:20 |
Dernière modification: | 25 sept. 2024 15:45 |
Citer en APA 7: | Rodrigues, I. M., Aloise, D., Fernandes, E. R., & Dagenais, M. (juin 2020). A soft alignment model for bug deduplication [Communication écrite]. 17th International Conference on Mining Software Repositories (MSR 2020), Seoul, Republic of Korea. https://doi.org/10.1145/3379597.3387470 |
---|---|
Statistiques
Dimensions