Sher Ali, Amir Haider, MuhibUr Rahman, Muhammad Sohail et Yousaf Bin Zikria
Article de revue (2021)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (5MB) |
Abstract
Fifth-Generation (5G) networks have adopted a multi-tier structural model which includes femtocells, picocells, and macrocells to ensure the user quality-of-service (QoS). To meet these QoS demands, the system requires optimization of different resources in different network dynamics carefully. However, if ignored, this will lead to long processing delays and high computational burdens. To avoid this, we proposed Deep Learning (DL) based resource allocation (RA) as a promising solution to meet the network requirements. DL is an effective mechanism where neural networks can learn to develop RA techniques. Thus, an optimized RA decision can be achieved using DL without exhaustive computations. Further, DL uses DL to achieve solutions for joint RA and remote-radio-head (RRH) association problems in multi-tier Cloud-Radio Access Networks (C-RAN). Initially, a summary of existing literature on DL-based RA techniques is provided, followed by a deep neural network (DNN) description, its architectures, and the data training method. Then, a supervised DL technique is presented to solve the joint RA and RRH-association problem. An efficient subchannel assignment, power allocation, and RRH-association (SAPARA) technique are used to generate the training data for the DNN model using the iterative approach where the seed data for the SAPARA technique is taken using a uniform power allocation and path-loss based association (UPA-PLBA) model. After training the DNN model, the accurateness of the presented model is tested. Simulation outcomes demonstrate that our proposed scheme is capable of providing an efficient solution in the considered scenario.
Mots clés
Deep learning, resource allocation, RRH-association, multi-tier networks, cloud-radio access networks, 5G networks
Sujet(s): |
2500 Génie électrique et électronique > 2500 Génie électrique et électronique 2500 Génie électrique et électronique > 2507 Systèmes de télécommunications 2500 Génie électrique et électronique > 2508 Réseaux de télécommunications 2800 Intelligence artificielle > 2805 Théories de l'apprentissage et de l'inférence |
---|---|
Département: | Département de génie électrique |
URL de PolyPublie: | https://publications.polymtl.ca/9329/ |
Titre de la revue: | IEEE Access (vol. 9) |
Maison d'édition: | IEEE |
DOI: | 10.1109/access.2021.3107430 |
URL officielle: | https://doi.org/10.1109/access.2021.3107430 |
Date du dépôt: | 02 mars 2023 15:54 |
Dernière modification: | 04 déc. 2024 09:12 |
Citer en APA 7: | Ali, S., Haider, A., Rahman, M.U., Sohail, M., & Zikria, Y. B. (2021). Deep learning (DL) based joint resource allocation and RRH association in 5G-multi-tier networks. IEEE Access, 9, 118357-118366. https://doi.org/10.1109/access.2021.3107430 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions