<  Retour au portail Polytechnique Montréal

On generalized surrogate duality in mixed-integer nonlinear programming

Benjamin Müller, Gonzalo Muñoz, Maxime Gasse, Ambros Gleixner, Andrea Lodi et Felipe Serrano

Article de revue (2022)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (600kB)
Afficher le résumé
Cacher le résumé

Abstract

The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global -optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm's ability to generate strong dual bounds through extensive computational experiments.

Mots clés

Surrogate relaxation, MINLP, Nonconvex optimization

Sujet(s): 2700 Technologie de l'information > 2713 Algorithmes
2700 Technologie de l'information > 2714 Mathématiques de l'informatique
Département: Département de mathématiques et de génie industriel
Centre de recherche: Autre
Organismes subventionnaires: Research Campus MODAL, Institute for Data Valorization - Postdoctoral Fellowship
Numéro de subvention: 05M14ZAM, 05M20ZBM
URL de PolyPublie: https://publications.polymtl.ca/9256/
Titre de la revue: Mathematical Programming (vol. 2021, no 1-2)
Maison d'édition: Springer Nature
DOI: 10.1007/s10107-021-01691-6
URL officielle: https://doi.org/10.1007/s10107-021-01691-6
Date du dépôt: 24 mars 2022 10:33
Dernière modification: 27 sept. 2024 10:28
Citer en APA 7: Müller, B., Muñoz, G., Gasse, M., Gleixner, A., Lodi, A., & Serrano, F. (2022). On generalized surrogate duality in mixed-integer nonlinear programming. Mathematical Programming, 2021(1-2), 1-30. https://doi.org/10.1007/s10107-021-01691-6

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document