Benjamin Müller, Gonzalo Muñoz, Maxime Gasse, Ambros Gleixner, Andrea Lodi et Felipe Serrano
Article de revue (2022)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (600kB) |
Abstract
The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global -optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solvers can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm's ability to generate strong dual bounds through extensive computational experiments.
Mots clés
Surrogate relaxation, MINLP, Nonconvex optimization
Sujet(s): |
2700 Technologie de l'information > 2713 Algorithmes 2700 Technologie de l'information > 2714 Mathématiques de l'informatique |
---|---|
Département: | Département de mathématiques et de génie industriel |
Centre de recherche: | Autre |
Organismes subventionnaires: | Research Campus MODAL, Institute for Data Valorization - Postdoctoral Fellowship |
Numéro de subvention: | 05M14ZAM, 05M20ZBM |
URL de PolyPublie: | https://publications.polymtl.ca/9256/ |
Titre de la revue: | Mathematical Programming (vol. 2021, no 1-2) |
Maison d'édition: | Springer Nature |
DOI: | 10.1007/s10107-021-01691-6 |
URL officielle: | https://doi.org/10.1007/s10107-021-01691-6 |
Date du dépôt: | 24 mars 2022 10:33 |
Dernière modification: | 27 sept. 2024 10:28 |
Citer en APA 7: | Müller, B., Muñoz, G., Gasse, M., Gleixner, A., Lodi, A., & Serrano, F. (2022). On generalized surrogate duality in mixed-integer nonlinear programming. Mathematical Programming, 2021(1-2), 1-30. https://doi.org/10.1007/s10107-021-01691-6 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions