<  Retour au portail Polytechnique Montréal

Min-max optimisation for nonconvex-nonconcave functions using a random zeroth-order extragradient algorithm

Amir Ali Farzin, Yuen-Man Pun, Antoine Lesage-Landry, Youssef Diouane et Iman Shames

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (4MB)
Afficher le résumé
Cacher le résumé

Abstract

This study explores the performance of the random Gaussian smoothing Zeroth-Order ExtraGradient (ZO-EG) scheme considering deterministic min-max optimisation problems with possibly NonConvex-NonConcave (NC-NC) objective functions. We consider both unconstrained and constrained, differentiable and non-differentiable settings. We discuss the min-max problem from the point of view of variational inequalities. For the unconstrained problem, we establish the convergence of the ZO-EG algorithm to the neighbourhood of an ε-stationary point of the NC-NC objective function, whose radius can be controlled under a variance reduction scheme, along with its complexity. For the constrained problem, we introduce the new notion of proximal variational inequalities and give examples of functions satisfying this property. Moreover, we prove analogous results to the unconstrained case for the constrained problem. For the non-differentiable case, we prove the convergence of the ZO-EG algorithm to a neighbourhood of an ε-stationary point of the smoothed version of the objective function, where the radius of the neighbourhood can be controlled, which can be related to the (δ, ε)-Goldstein stationary point of the original objective function.

Renseignements supplémentaires: https://jmlr.org/tmlr/papers/ ;
Code: https://github.com/amirali78frz/Minimax_projects/tree/main/ZOEG_wMVI
Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/69119/
Titre de la revue: Transactions on Machine Learning Research
Maison d'édition: TMLR
URL officielle: https://openreview.net/forum?id=1bxY1uAXyr
Date du dépôt: 07 nov. 2025 13:28
Dernière modification: 09 nov. 2025 03:37
Citer en APA 7: Farzin, A. A., Pun, Y.-M., Lesage-Landry, A., Diouane, Y., & Shames, I. (2025). Min-max optimisation for nonconvex-nonconcave functions using a random zeroth-order extragradient algorithm. Transactions on Machine Learning Research, 59 pages. https://openreview.net/forum?id=1bxY1uAXyr

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Actions réservées au personnel

Afficher document Afficher document