<  Retour au portail Polytechnique Montréal

A column generation algorithm with dynamic constraint aggregation for minimum sum-of-squares clustering

Antonio M. Sudoso et Daniel Aloise

Article de revue (2025)

Un lien externe est disponible pour ce document
Afficher le résumé
Cacher le résumé

Abstract

The minimum sum-of-squares clustering problem (MSSC), also known as k-means clustering, refers to the problem of partitioning n data points into k clusters, with the objective of minimizing the total sum of squared Euclidean distances between each point and the center of its assigned cluster. We propose an efficient algorithm for solving large-scale MSSC instances, which combines column generation (CG) with dynamic constraint aggregation (DCA) to effectively reduce the number of constraints considered in the CG master problem. DCA was originally conceived to reduce degeneracy in set partitioning problems by utilizing an aggregated restricted master problem obtained from a partition of the set partitioning constraints into disjoint clusters. In this work, we explore the use of DCA within a CG algorithm for MSSC exact solution. Our method is fine-tuned by a series of ablation studies on DCA design choices, and is demonstrated to significantly outperform existing state-of-the-art exact approaches available in the literature.

Mots clés

Matériel d'accompagnement:
Département: Département de génie informatique et génie logiciel
Organismes subventionnaires: NSERC
Numéro de subvention: 2023-04466
URL de PolyPublie: https://publications.polymtl.ca/66570/
Titre de la revue: INFORMS journal on computing
Maison d'édition: Institute for Operations Research and the Management Sciences
DOI: 10.1287/ijoc.2024.0938
URL officielle: https://doi.org/10.1287/ijoc.2024.0938
Date du dépôt: 21 juil. 2025 10:36
Dernière modification: 03 févr. 2026 15:02
Citer en APA 7: Sudoso, A. M., & Aloise, D. (2025). A column generation algorithm with dynamic constraint aggregation for minimum sum-of-squares clustering. INFORMS journal on computing, 16 pages. https://doi.org/10.1287/ijoc.2024.0938

Statistiques

Dimensions

Actions réservées au personnel

Afficher document Afficher document