<  Retour au portail Polytechnique Montréal

Comparative analysis of classical and ensemble models for predicting whole body vibration induced lumbar spine stress. A case study of agricultural tractor operators

Amandeep Singh, Naser Nawayseh, Philippe Doyon-Poulin, Stephan Milosavljevic, Krishna N. Dewangan, Yash Kumar et Siby Samuel

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (4MB)
Afficher le résumé
Cacher le résumé

Abstract

Accurate prediction of lumbar health is necessary for developing effective ergonomic strategies for tractor operators exposed to whole-body vibration. This study aims to predict static compression dose (Sed), a key measure of lumbar spine stress as per ISO 2631-5, by comparing classical regression and ensemble models. Three tractor operation parameters (average speed, average depth, and pulling force) are considered to assess Sed during rotary tillage operation. The performance of two classical models (Linear and Huber regression) is compared with five ensemble models (Random Forest, Gradient Boosting, XGBoost, AdaBoost, and Bagging regressors) in predicting Sed. The comparison identifies the best models in each category, with linear regression achieving a mean bootstrap R2 of 0.91 (95 % CI: 0.87 to 0.94) and Random Forest achieving 0.93 (95 % CI: 0.90 to 0.95). To further enhance performance, meta-models are developed using two meta-learners (Random Forest and Gradient Boosting) to integrate classical and ensemble models. These models are optimized using different ensemble strategies: simple averaging, weighted averaging, stacking, and voting regressors. Among these, the stacking method proves most effective, achieving a mean bootstrap R2 of 0.94 (95 % CI: 0.93 to 0.96). Feature importance analysis reveals that the multi-model combination of ensemble models achieves the highest predictive score (0.99) for Sed. These findings demonstrate that ensemble models outperform classical models in predicting Sed, particularly when combined through stacking methods. This advancement has significant implications for improving occupational health and safety among tractor operators, potentially leading to better ergonomic tractor designs aimed at reducing lumbar spine stress.

Mots clés

Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/66298/
Titre de la revue: International Journal of Industrial Ergonomics (vol. 108)
Maison d'édition: Elsevier BV
DOI: 10.1016/j.ergon.2025.103775
URL officielle: https://doi.org/10.1016/j.ergon.2025.103775
Date du dépôt: 26 juin 2025 15:52
Dernière modification: 14 févr. 2026 01:20
Citer en APA 7: Singh, A., Nawayseh, N., Doyon-Poulin, P., Milosavljevic, S., Dewangan, K. N., Kumar, Y., & Samuel, S. (2025). Comparative analysis of classical and ensemble models for predicting whole body vibration induced lumbar spine stress. A case study of agricultural tractor operators. International Journal of Industrial Ergonomics, 108, 103775 (12 pages). https://doi.org/10.1016/j.ergon.2025.103775

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document