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b Department of Mechanical and Nuclear Engineering, College of Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates
c School of Rehabilitation Science, College of Medicine, University of Saskatchewan, Saskatoon, S7N 2Z4 Saskatchewan, Canada
d Department of Agricultural Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli, 791109, India
e Iowa Technology Institute, The University of Iowa, Iowa City, IA 52242, United States
f Department of System Design Engineering, University of Waterloo, N2L 3G1, Ontario, Canada

A R T I C L E  I N F O

Keywords:
Whole-body vibration
Daily equivalent static compression dose
Lumbar spine stress
Classical regression
Ensemble modeling
Ensemble meta-modeling
Explainable artificial intelligence

A B S T R A C T

Accurate prediction of lumbar health is necessary for developing effective ergonomic strategies for tractor op
erators exposed to whole-body vibration. This study aims to predict static compression dose (Sed), a key measure 
of lumbar spine stress as per ISO 2631-5, by comparing classical regression and ensemble models. Three tractor 
operation parameters (average speed, average depth, and pulling force) are considered to assess Sed during rotary 
tillage operation. The performance of two classical models (Linear and Huber regression) is compared with five 
ensemble models (Random Forest, Gradient Boosting, XGBoost, AdaBoost, and Bagging regressors) in predicting 
Sed. The comparison identifies the best models in each category, with linear regression achieving a mean 
bootstrap R2 of 0.91 (95 % CI: 0.87 to 0.94) and Random Forest achieving 0.93 (95 % CI: 0.90 to 0.95). To further 
enhance performance, meta-models are developed using two meta-learners (Random Forest and Gradient 
Boosting) to integrate classical and ensemble models. These models are optimized using different ensemble 
strategies: simple averaging, weighted averaging, stacking, and voting regressors. Among these, the stacking 
method proves most effective, achieving a mean bootstrap R2 of 0.94 (95 % CI: 0.93 to 0.96). Feature importance 
analysis reveals that the multi-model combination of ensemble models achieves the highest predictive score 
(0.99) for Sed. These findings demonstrate that ensemble models outperform classical models in predicting Sed, 
particularly when combined through stacking methods. This advancement has significant implications for 
improving occupational health and safety among tractor operators, potentially leading to better ergonomic 
tractor designs aimed at reducing lumbar spine stress.

1. Introduction

From 1971 to 2021, the number of tractors used in Indian agriculture 
increased from 0.168 to 9.173 million (Mehta et al., 2024). India now 
manufactures approximately one-third of global tractor production 
(Mehta et al., 2019), making it a significant player in the global agri
cultural machinery industry. This significant tractor usage and produc
tion growth emphasizes addressing operator health and safety issues. 
However, occupational health concerns faced by agricultural workers in 

India have historically received limited attention (Dewangan et al., 
2023), despite the increased mechanization. With the high degree of 
tractor use, a safe and comfortable working environment for the oper
ator becomes important to enhance productivity and operator satisfac
tion (Benos et al., 2020). Moreover, farmers are becoming more aware of 
ergonomic risks, including physical exposures and injury hazards.

One of the major ergonomic concerns associated with agricultural 
vehicles is the exposure of operators to high levels of whole-body vi
bration (WBV). WBV contributes significantly to health risks, 
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discomfort, and reduced productivity (Bovenzi and Betta, 1994; Milo
savljevic et al., 2011; Zeng et al., 2017). Studies have consistently 
demonstrated that WBV is transmitted primarily through the seat to the 
buttocks and back, and through the floor or footrests to the feet (Mehta 
and Tewari, 2000; Rakheja et al., 2020). In extreme cases, vibration 
exposure is sufficiently severe to compromise operator balance and 
control (Lines et al., 1995). The four principal adverse effects of 
increased ride vibrations include degraded health, impaired activities, 
degraded comfort, and motion sickness (ISO 2631-1:1997, 2010). Pro
longed exposure to vibrations, particularly near the resonance frequency 
of the human body, significantly contributes to vibration-induced 
discomfort (Griffin, 2007). Furthermore, vibration exposure contrib
utes to fatigue, reducing productivity among tractor operators (Krajnak, 
2018). Studies have also shown that vehicle operators have the risk of 
developing musculoskeletal disorders, particularly lower back pain 
(Eger et al., 2008; Killen and Eger, 2016; Tiemessen et al., 2007; 
Wahlström et al., 2018; Zanatta et al., 2019; Zhang et al., 2019; Zhang 
and Guo, 2023). Lower back disorders are more prevalent among tractor 
operators compared to the general population due to the greater 
magnitude of tractor vibration compared to on-road vehicles (Bovenzi 
and Betta, 1994; Singh et al., 2018b). These findings emphasize the 
urgent need to develop effective strategies aimed at reducing WBV 
exposure among tractor operators, thereby mitigating health risks and 
improving overall well-being and productivity.

Several studies have reported elevated WBV exposures in operators 
various vehicles. Marin et al. (2017) reported that the 8-h vibration dose 
value (VDV(8)) and 8-h static compression dose (Sed) were significantly 
higher in mining vehicles. Based on these exposures, it was recom
mended to reduce vehicle operator time by 50–66 % to remain within 
daily exposure (A(8)) vibration tolerance limits. Langer et al. (2015)
examined the effect of four-wheel drive on WBV in tractors with large 
square balers, showing that the four-wheel-drive mode, especially dur
ing downhill operations, increased WBV exposure, highlighting its in
fluence on the longitudinal dynamics and vibration exposure of tractors. 
Chang et al. (2011) found that dump truck operators in Taiwan expe
rienced vibration exposures exceeding ISO 2631-1 (1997) action limits. 
Another studies identified high vibration exposure levels during on-farm 
vehicle use in New Zealand and Canada (Milosavljevic et al., 2012; Zeng 
et al., 2017). In India, Sed during rotary soil tillage operations was 
evaluated and found to range between 0.38 and 0.76 MPa, indicating a 
moderate risk of adverse health effects (Singh et al., 2019). Forward 
speed and pulling force had significant effects on Sed, contributing 64.43 
% and 24.73 % of the variation, respectively. Similarly, Singh et al. 
(2022) reported that speed and water level significantly affected Sed 
during operations with water tankers, exceeding ISO 2631-5 limits. 
These findings highlight the critical need for addressing WBV exposure 
specifically within agricultural contexts in India.

Previous research has focused on measuring vibration exposure 
under various operational conditions, examining factors such as seat 
cushions, cab suspension, shock absorbers, tire pressure, and vehicle 
speed, predominantly focusing on overall ride comfort. For example, 
Mehta and Tewari (2010) measured WBV exposure during operations 
with different implements, evaluating various cushion materials for 
damping characteristics, finding high-density polyurethane foam most 
effective. Velmurugan et al. (2012) reported WBV levels exceeding ISO 
2631–1:1997 upper limits during tractor semitrailer operations under 
varying conditions, highlighting significant health risks. Nguyen and 
Inaba (2011) investigated the impact of tire characteristics on vibrations 
transmitted to tractors, emphasizing influences from speed and tire 
pressure. Adams et al. (2004) demonstrated improvements in tractor 
ride comfort through central tire inflation systems, highlighting signif
icant reductions in resonant frequencies and ride discomfort. Deprez 
et al. (2005) optimized nonlinear suspension systems in off-road vehi
cles using in situ measurements, effectively enhancing comfort. Singh 
et al. (2018a) assessed tractor ride comfort during rotary tillage opera
tions and found WBV levels ranged from "fairly uncomfortable” to 

"uncomfortable” (according to ISO 2631–1:1997; see section C.2.3 – 
comfort reactions to vibration environments in this standard), largely 
driven by tractor velocity and draft force. Another study further vali
dated the substantial WBV exposure exceeding ISO 2631-1: 1997 rec
ommended exposure action values (Singh et al., 2023b). In addition, the 
frequency response at the seat pan was primarily observed within the 
4–7 Hz and 8–13 Hz frequency ranges, with the vibration energy fluc
tuating across this low-frequency spectrum during tillage.

Despite extensive WBV research, predictive modeling of WBV- 
associated health risks using advanced machine learning (ML) tech
niques remains underexplored (Chan et al., 2022; Prakash et al., 2025; 
Singh et al., 2023c). Based on the literature review, several studies have 
successfully applied ML techniques in different vibration exposure 
contexts, including bus operators (Hanumegowda and Gnanasekaran, 
2022), knee joint vibration signals (Zheng et al., 2021), gender differ
ences in horizontal transmissibility (AlShabi and Nawayseh, 2022), 
high-impact shovel loading operations in surface mining (Ali and 
Frimpong, 2021), diagnosed whole-body vibration faults in aeroengines 
(Fei and Bai, 2013), and dumper operators in mining (Ramar et al., 
2023). However, ML applications for tractor operators remain signifi
cantly underexplored, with existing studies focusing on psychophysio
logical workload (Lu et al., 2020; Pei et al., 2019), workload assessment 
(Hota et al., 2023), driving performance (Zhao et al., 2024) and ride 
comfort (Singh et al., 2023c; Zhang et al., 2024). Critically, limited 
attention has been given to health risk prediction, especially Sed (an 
important health risk parameters to assess the lumbar spine stress from 
WBV exposure). This limitation is particularly critical as tractor opera
tors experience complex WBV exposures influenced by multiple 
nonlinear factors such as variations in soil properties, implement 
attachment/operating conditions, tractor speed fluctuations, driver 
anthropometry etc., which traditional statistical methods struggle to 
capture and model effectively. Advanced ML techniques can capture 
these nonlinear interactions, making them highly suitable for devel
oping robust prediction models (Chakraborty et al., 2024; Zhou et al., 
2024).

Given the diverse range of ML algorithms available, it is essential to 
identify those that can leverage the strengths of multiple approaches to 
capture complex nonlinear relationships and enhance predictive accu
racy. While existing ML models show promise, there is still significant 
potential to explore more advanced computational approaches, partic
ularly ensemble methods (Abimannan et al., 2023; Campagner et al., 
2023; Mohammed and Kora, 2023; Yang et al., 2023). Ensemble models 
are particularly effective in capturing nonlinear relationships mitigating 
overfitting, and balancing bias and variance (Ganaie et al., 2022). While 
most ML-based studies utilize single (individual) models to test their 
predictive strength; an individual model’s performance may not always 
be sufficient for practical implementation, particularly when consid
ering dynamic operational conditions typical of agricultural environ
ments. In such cases, multi-model ensemble approaches can combine 
multiple algorithms and often outperform any single model (Jiang et al., 
2024; Manjunatha and Tsiotras, 2023). Although deep learning models 
have gained popularity, they often face challenges (e.g., overfitting, 
computational complexity), particularly with complex WBV datasets 
(Jiang et al., 2024). Conversely, ensemble models typically require less 
data to train, incur lower computational demands (Cao et al., 2020), and 
are less prone to overfitting (Ganaie et al., 2022). Nonetheless, even 
advanced ensemble approaches must address model transparency and 
interpretability, which are essential for adoption in real-world settings, 
especially in ergonomics and safety policies. Explainable AI (XAI) 
techniques provide information into the influence of operational fea
tures and the models used in multimodal approach for Sed predictions, 
enabling practitioners, policymakers, and designers to make informed 
decisions such as tailoring interventions, optimizing tractor suspension 
designs, implementing ergonomic seating solutions, and refining oper
ational guidelines for different soil and terrain conditions.

The present study aims to develop an accurate and robust predictive 
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model for assessing health risks associated with WBV exposure among 
tractor operators during rotary soil tillage operation. Specifically, this 
research evaluates health risk according to ISO 2631-5 by computing the 
Sed parameter. The predictive performance of two classical models—
Linear and Huber Regression—is compared with five ensemble mod
els—Random Forest, Gradient Boosting, XGBoost (Extreme Gradient 
Boosting), AdaBoost (Adaptive Boosting), and Bagging Regressors—in 
predicting Sed. The bootstrap method evaluates model stability and 
confidence intervals (Bhutamapuram and Sadam, 2022), aiming to 
identify the optimal model within each category. Subsequently, 
meta-models are developed separately from the classical and ensemble 
models using two meta-learner methods (Random Forest and Gradient 
Boosting) to improve prediction performance. These models are then 
combined using four ensemble strategies: simple averaging, weighted 
averaging, stacking with linear regression, and voting regressors 
(Ganaie et al., 2022). Moreover, an XAI-based feature importance 
analysis (Kumar and Taylor, 2024) is conducted to ensure transparency 
and interpretability in understanding the importance of operational 
parameters (tractor speed, pulling force and tool depth). Additionally, 
predictive models (used to develop a multimodal) are tested to deter
mine their impact on Sed. We hypothesize that ensemble-driven multi-
model approaches can demonstrate better performance in predicting Sed 
under WBV exposures while maintaining interpretability through XAI 
procedure.

2. Methodology

This section outlines the detailed research methodology for devel
oping prediction models for predicting Sed. It includes the details about 
participants, tractor ride features, target variable, experimentation, 
feature engineering, classical and ensemble models, meta-model 
development, ensemble-based meta-model development with different 
methods (simple averaging, weighted averaging, stacking with linear 
regression, and voting regressors), hyper tuning and optimization and 
model interpretability approach. Fig. 1 illustrates the methodological 
framework for the development of Ensemble Meta-Models.

2.1. Participants

Tractor operators were recruited from Punjab Agricultural Univer
sity (Ludhiana, India) based on the following criteria: (i) a minimum of 
two years of tractor-driving experience, (ii) absence of any self-reported 
musculoskeletal disorders, and (iii) no known hypersensitivity to vi
bration. This selection aimed to ensure participants were sufficiently 
experienced and capable of managing field-based tractor operations 
under actual working conditions. Interested operators were initially 
briefed on the study’s objectives and procedures. Those volunteered 
underwent a screening process to confirm they met the inclusion 
criteria. The final set of five participants was chosen because of limited 
field availability. Unlike on-road studies, soil tillage experiments require 
fresh field patches to maintain consistent soil conditions (such as 
moisture content, soil strength, weed intensity etc.) across each exper
iment run. Once a portion of the field has been tilled, its soil properties 
changes, which would introduce variability and potentially confound 
the vibration exposures. To ensure consistent exposure levels and reli
able data, each participant performed three repeated experiments 
without reusing the same tilled area. In this case, including more than 
five participants would have required reusing the tilled area of the field, 
potentially compromising data reliability. The study’s primary focus is 
on data-driven prediction modeling rather than broad epidemiological 
generalization. However, the selected participants reflect typical 
anthropometric characteristics of young, healthy tractor operators in the 
region, providing a reasonable foundation for training predictive models 
on vibration exposure. While the findings are applicable to similar 
working populations, further validation would be required for general
izing the developed models to other demographic groups.

Prior to data collection, the study protocol was reviewed and 
approved by the Institutional Ethics Committee of the GNDEC, Ludhiana 
(India). Permission for experimental resources (such as field, tractor, 
machinery and manpower) was granted by Punjab Agricultural Uni
versity, Ludhiana (India) [VC-4545]. Written informed consent was 
obtained from each participant in accordance with the Declaration of 
Helsinki and institutional guidelines.

The five participating tractor operators were male, aged between 21 
and 25 years (mean 22.8 years). Their heights ranged from 1.70 to 1.81 

Fig. 1. Methodological process of the ensemble meta-model development.

A. Singh et al.                                                                                                                                                                                                                                   International Journal of Industrial Ergonomics 108 (2025) 103775 

3 



m (mean 1.75 m), and their weights ranged from 65 to 79 kg (mean 71 
kg), resulting in a mean body mass index (BMI) of 23.32 kg/m2. This 
BMI range falls within normal limits and may reduce inter-participant 
variability in certain anthropometric factors. This range also repre
sents a typical BMI distribution for young tractor operators in the study 
region. Therefore, these participants can be considered reasonably 
representative of young, healthy tractor operators in this agricultural 
setting. Including participants with a normal BMI helped reduce 
anthropometric biases in assessing vibration-induced lumbar stress and 
ensured a more reliable dataset for prediction model development.

2.2. Machinery, instrumentation and experimental design

The study was conducted in a wheat-harvested field. Prior to the 
experiment, soil samples were collected from four random locations and 
analyzed for texture according to ISO 14688–1:2002 standards. The soil 
was categorized as sandy clay loam, with a composition of 66.25 % sand, 
9.27 % silt, and 27 % clay. The soil moisture content was measured in 
accordance with ISO 17892–1:2014, ranged from 48.61 % to 55.43 %. 
Soil strength was measured using a digital cone penetrometer, with 
values of approximately 12 kPa, 22 kPa, and 29 kPa at depths of 0–0.06 
m, 0.05–0.11 m, and 0.10–0.16 m, respectively. A 2-wheel drive 41 kW 
tractor (Model: FT 65 EPI Farmtrac, Make: Escort Kubota Limited, India) 
was used for the experiments and was fitted with a standard 
manufacturer-installed seat. This particular tractor was selected because 
it is commonly used in the region. It represents typical power and 
operational characteristics relevant to local farming practices. A rotary 
tiller of dimensions 1.35 × 2.50 × 0.94 m and weighing 455 kg was 
attached to the tractor. The working width of the rotary tiller was 2.13 m 
and it was fitted with 48 C-shaped blades distributed across 8 flanges. 
The tiller could tile soil up to a depth of 0.15 m. This tiller design is 
popular among the farmers of the region due to its efficient soil-cutting 
capabilities and lower energy consumption compared to alternative 
rotary tillers (L or J shaped blades).

This study utilized Internet of Things (IoT) technology for remote 
vibration measurement (Singh et al., 2023b). The system employed an 
ESP8266 microcontroller to transmit vibration data to the cloud via 
Wi-Fi, enabling real-time remote monitoring. The SV106 vibration 
analyzer was integrated into the IoT system by connecting it to the 
ESP8266 through an RJ45 Ethernet port. The microcontroller was pro
grammed to read data from the analyzers through this interface, con
verting the data into a format that could be transmitted via Wi-Fi. This 
involved configuring the analyzers to output vibration data in a 
compatible format (e.g., serial or analog output) that the ESP8266 could 
process. We developed code in Arduino C++ that handled data acqui
sition and Wi-Fi communication to send data on the cloud. The cloud 
data could then be accessed through an Android application 
(https://ergoaman1.web.app/#/), also available on desktop computers 
for further analysis. This system allows for continuous, remote moni
toring of vibration data without requiring manual data collection. More 
details about the system can be found in the previous part of the pub
lication (Singh et al., 2023c).

Taguchi’s L27 orthogonal array was used to prepare a systematic 
experiment design, consisting of 27 experiment trial conditions (Singh 
et al., 2023c). Thus, a total of 405 experimental trials were performed by 
the five participants, who performed 27 experiments, with each exper
iment repeated three times. The WBV exposure to the tractor operators 
was recorded for a trial distance of 30 m, with each trial lasting 
approximately 38–50 s, depending on the speed range (0.6–0.8 m/s). 
This duration includes the time required for the machinery to accelerate 
and stabilize within the desired speed range before reaching the start of 
the 30-m measurement section. Start and end points were pre-marked on 
the field using visible reference points. Participants were instructed to 
maintain their preferred sitting posture throughout the trials, ensuring 
their back remained in contact with the seat’s backrest. Vibration ac
celerations were recorded at the seat pan along the fore-and-aft (x), 

lateral (y), and vertical (z) axes during each experimental condition. The 
sampling rate was 6000 samples per second for each axis, and a total of 
405 experiments were conducted. Given that each experiment lasted 
between 38 and 50 s, the total number of data samples collected ranged 
from approximately 228 million to 300 million, depending on the exact 
duration of each trial.

2.3. Ride features and feature engineering

This study includes three ride features: average speed (AS), pulling 
force (PF), and average tool depth (AD) (Singh et al., 2023b, 2023c). 
Participants were instructed to maintain the mean speed of the tractor 
between 0.6 and 0.8 m/s. The Bureau of Indian Standards recommended 
this speed for rotary tilling operations. Rotary tilling required a pulling 
force of 2, 4, or 6 kN, depending on terrain conditions. The pulling force 
was determined using a dynamometer attached between the tractor and 
rotary tiller (Singh et al., 2019). The depth of operation were 0.10 m, 
0.12 m, and 0.14 m, respectively, for pulling forces of 2, 4, and 6 kN. The 
target variable, i.e., Sed, was evaluated under different input conditions. 
The Sed represents the mean daily dose of peak acceleration values 
experienced at the lumbar spine. The procedure for evaluating Sed is 
presented in detail in ISO 2631-5 (2018) and in previous publications 
(Singh et al., 2022).

The original dataset contains three input features: AS, AD, and PF, 
with Sed as the target variable. The featured engineering was performed 
to create further derived features from the original to capture potential 
nonlinear relationships and interactions between the original features. 
This step is important for capturing complex relationships in the data 
that may not be apparent in the original features. It was assumed that the 
combined effect of two features might be more informative than their 
individual effects. Therefore, three new interaction terms, AS × AD, AS 
× PF, and AD × PF were generated by multiplying pairs of original 
features. These interaction terms were added to the original feature set 
to expand the input space from three to six features. This step included 
feature analysis and selection to identify the most informative predictors 
in developing Sed prediction model. The Pearson correlation matrix for 
all six features was calculated (Peng et al., 2005). This correlation 
analysis helped to identify potential multicollinearity issues and pro
vided insights into the linear relationships between features. The mutual 
information regression method was employed to quantify the statistical 
dependency that helped capture both linear and nonlinear relationships 
between the features and the target variable based on the computed 
mutual information scores (Gong et al., 2024; Peng et al., 2005). The 
correlation analysis helped identify potential redundancies and in
teractions between features, while the mutual information-based selec
tion helped identify the most informative features for the target variable, 
potentially capturing nonlinear relationships that correlation analysis 
might have missed. The features with higher mutual information scores 
were selected to contribute as informative predictors to improve the 
performance and interpretability of subsequent modeling steps.

2.4. Prediction modeling

2.4.1. Linear and ensemble models
Two model categories, i.e., classical linear and advanced ensemble 

methods, were developed and compared to predict the Sed in the present 
study. Linear Regression (LR) was employed for linear models, which 
assumes a direct linear relationship between features and the target 
variable, and Huber Regression (HR) to mitigate the impact of outliers 
(Feng and Wu, 2022). These models served as a baseline to further 
compare with ensemble models. Five advanced techniques i.e., Random 
Forest (RF), Extra Trees (ET), Gradient Boosting (GB), XGBoost (XG), 
AdaBoost (AB), and Bagging (BG) Regressor was, used for ensemble 
models (González et al., 2020). Random Forest and Extra Trees Re
gressors were implemented with 100 estimators each, leveraging the 
power of multiple decision trees with different splitting strategies. 
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Gradient Boosting and XGBoost Regressors, also with 100 estimators, 
were employed for their ability to sequentially improve predictions by 
correcting errors in previous trees. Additionally, the AdaBoost Regressor 
with 50 estimators and the Bagging Regressor with 10 estimators were 
incorporated to reduce variance through random subsets of the data. All 
models were trained on the same features selected using mutual infor
mation scores to ensure fair comparison.

2.4.2. Development of meta-models
Meta models leveraged the strength of multiple base models, 

including linear and ensemble models. Separate meta-models were 
developed for linear models, integrating LR and HR, and for ensemble 
models, by integrating RF, ET, GB, XG, AB, and BG. Each meta-model 
had two different learners, i.e., RF and GB, resulting in four meta- 
models, two for the linear models and two for the ensemble models. 
Both meta-learners were set up with 50 estimators, providing sufficient 
capacity to learn from diverse base model predictions while maintaining 
reasonable training and prediction times. In RF, each estimator repre
sents a decision tree, whereas in GB, it represents a boosting stage. This 
configuration allows the meta-models to capture complex data re
lationships without overfitting. The stacking process begins with cloning 
the base models to ensure independence and prevent data leakage. 
Meta-features were generated using Leave-One-Out cross-validation by 
training each base model on all but one sample and predicting the held- 
out sample (Varoquaux et al., 2017). This was repeated for all samples, 
which resulted in out-of-fold predictions that formed the meta-features. 
The meta-model training involved four key steps: cloning and preparing 
base models, thus generating meta-features through cross-validation by 
training each base model on the entire dataset and training the 
meta-model (RF and GB) on the generated meta-features. The fitted base 
models generated meta-features from input data during prediction. The 
trained meta-models were used to produce the final prediction. This 
multi-layered approach captures complex patterns potentially missed by 
individual models (Jiang et al., 2024). By developing separate 
meta-models for linear and ensemble base models, different model 
complexities were explored, which affected the final predictions, thus 
providing a robust framework for integrating diverse techniques and 
improving Sed’s predictive performance.

2.4.3. Meta-modeling using ensemble learning approaches
After developing meta-models based on both linear and ensemble 

base models, it was recognized that combining them could improve 
predictive performance (Figueroa, 2024). This meta-ensemble approach 
was motivated by two key reasons. First, it aimed to take advantage of 
the strengths of each meta-learning algorithm (Manjunatha and Tsio
tras, 2023), potentially capturing more complex patterns in predicting 
Sed. Second, combining the meta-models was intended to reduce bias 
and variance, resulting in more stable and generalizable predictions 
(Ganaie et al., 2022). Four different methods were used separately to the 
linear and ensemble meta-models to develop meta-ensembling models, 
including simple averaging (SA), weighted averaging (WA), stacking 
with linear regression (SLR), and voting regressors (VR) (Ganaie et al., 
2022). In simple averaging, the mean of predictions was calculated from 
both meta-models. Weighted average assigned equal weights of 0.5 for 
prediction. LR as a final layer was used for stacking to learn optimal 
combinations of meta-model predictions. The VR combined RF and GB 
estimators to make predictions based on majority voting. The perfor
mance of these methods was compared to obtain the optimum ensem
bled model.

2.5. Model evaluation, hypertuning and bootstrap analysis

The dataset consisted of 405 Sed measurements, with each mea
surement representing the average Sed response for an individual 
experiment trial. To ensure a balanced and unbiased evaluation, we split 
the dataset into 284 training samples (70 %) and 121 testing samples 

(30 %), a commonly used ratio in machine learning to optimize bias- 
variance trade-off. Before training, we applied standard preprocessing 
techniques, including data normalization and outlier removal, to 
enhance data consistency. We employed the Leave-One-Out (LOO) 
cross-validation strategy for model validation (Varoquaux et al., 2017). 
The hyperparameters for each model are shown in Appendix 1. Bayesian 
optimization to fine-tune model parameters was used to improve per
formance (Singh et al., 2023c). The models were evaluated based on a 
set of performance metrics, namely mean absolute error (MAE), mean 
squared error (MSE), root mean squared error (RMSE), and coefficient of 
determination (R2). The MAE, MSE, and RMSE quantify prediction er
rors. Lower values of the performance matrix indicate superior perfor
mance. MAE measures the mean absolute difference between predicted 
and actual values. MSE emphasizes larger errors by squaring differences. 
RMSE provides an error metric. R2 indicates the proportion of variance 
in the target variable explained by the model. The values of the R2 closer 
to 1 suggest a better fit. The mean percentage error rate was also 
calculated as a normalized measure of prediction error relative to actual 
values.

The stability and reliability of the models were tested through 
bootstrap analysis (Bhutamapuram and Sadam, 2022). Bootstrap is a 
statistical technique that allows for the empirical estimation of the 
sampling distribution of a statistic. Specifically, bootstrap resampling 
was applied by creating 1000 resamples of the original dataset with 
replacement. The models and their calculated R2 values were retrained 
for each resample, which provided a distribution of R2 estimates for each 
model. This approach enabled a more reliable estimate of the true per
formance metrics of the models than a single calculation on the original 
dataset. The 95 % confidence intervals (CIs) were calculated using the 
percentile method, where the lower and upper bounds correspond to the 
2.5th and 97.5th percentiles of the bootstrap distribution 
(Bhutamapuram and Sadam, 2022; Henderson, 2005). Narrow CIs of the 
models show high stability, which suggests consistent predictive per
formance across different subsets of the data. Conversely, wider in
tervals suggest greater variability and sensitivity to the specific data 
points used for training.

2.6. Model interpretability

Permutation-based feature importance analysis, an Explainable AI 
approach, was used to interpret the influence of each input feature on 
the model’s predictive performance (Kumar and Taylor, 2024). This 
method involves randomly shuffling individual features and measuring 
the resulting change in model accuracy, which provides insights into 
each feature’s relative importance. This analysis reveals the relative 
significance of each feature in predicting Sed. Thus, it is easy to identify 
the most influential factors in the model. The analysis was further 
extended to examine the importance of base models within the 
ensemble. This involved assessing base models’ univariate, bivariate and 
multivariate impact in contributions to the ensembled meta-model. It 
allowed us to identify the models and their combinations to achieve 
optimal predictive accuracy for Sed.

2.7. Software

MATLAB R2024a was used for data analysis and ML tasks. Key 
toolboxes included ‘Statistics and ML Toolbox’ for implementing various 
regression models, cross-validation, and performance metrics. The 
‘fitlm’, ‘fitrensemble’ and ‘fitrsvm’ were employed for linear regression, 
’ensemble methods like Random Forest and Gradient Boosting, and for 
Support Vector Regression, respectively. Cross-validation was imple
mented using the ‘crossval’ function with Leave-One-Out method. The 
‘fscmrmr’ function performed minimum redundancy and maximum 
relevance (mRMR) for feature selection. Performance metrics were 
calculated using built-in functions like ‘mse’ for MSE and irsquared’ for 
R2 values.
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3. Results and discussion

3.1. Descriptive and statistical analysis

The results showed a mean Sed value of 0.55 MPa with a standard 
deviation of 0.11 MPa. The range of Sed varied from 0.35 MPa to 0.790 
MPa with an interquartile range (IQR) of 0.16 MPa. The distribution of 
Sed was slightly right-skewed (skewness: 0.37) and platykurtic (kurtosis: 
− 0.56), indicating a flatter-than-normal distribution.

Correlation analysis revealed significant relationships between 
operational parameters and Sed. A strong positive correlation was 
observed between AS and Sed (R = 0.77, p < 0.00001), indicating that 
higher speeds substantially increase the vibration experienced by the 
operators. These findings align with the fundamental principles of vi
bration mechanics, where higher operational speeds correspond to 
increased vibration magnitude transmitted through the vehicle chassis. 
AD showed a moderate negative correlation with Sed (R = − 0.54, p <
0.01). This inverse relationship may be due to a damping effect from soil 
engagement, where deeper penetration by the rotary tiller increases 
cutting force and dampens oscillation, reducing vibration magnitude. It 
is also possible that soil type and conditions not captured in the current 
dataset influenced this relationship. PF exhibited a weak positive cor
relation with Sed (r = 0.14, p > 0.05). While increased pulling force 
slightly raised vibration levels, the effect was insignificant compared to 
the influence of speed and tool depth. This suggests that the tractor’s 
engine and transmission system may effectively isolate much of the 
additional vibration generated by increased pulling forces.

Linear regression analysis further confirmed the results of the study. 
AS emerged as the strongest predictor of Sed (R = 0.77, p < 0.00001). It 
was observed that for every unit increase in mean speed, Sed increased 
by approximately 1.06 MPa, emphasizing the important role of speed 
management in mitigating health risks associated with WBV. The 
negative relationship between AD and Sed (slope = − 3.72, R2 = 0.29, p 
< 0.01) reinforces the earlier correlation findings. The relationship be
tween the PF and Sed was weak and insignificant (R2 = 0.02, p =
0.4777). Interaction between AS and PF showed a moderate positive 
relationship with Sed (R2 = 0.14, p = 0.0509). This suggests that the 
combined effect of speed and pulling force may be more relevant than 
pulling force alone. Other interactive terms (AS × AD, AD × PF, and AS 
× AD × PF) demonstrated weak relationships with Sed and were not 

significant.
ANOVA test result (F = 104.56, p < 0.00001) provided strong evi

dence that the combined effect of all variables significantly influences 
Sed. The model, incorporating all variables and their interactions, 
significantly improved the prediction of Sed, except for the three-way 
interaction term (AS × AD × PF), which did not significantly 
contribute to the model’s performance. This suggests that while the full 
model improves prediction, the highest-order interaction term did not 
add meaningful explanatory power.

3.2. Model performance and reliability

The results of the model performance metrics (MSE, RMSE, R2, and 
MAE) are presented in Fig. 2. In addition, the results of the Bootstrap 
analysis (used to assess the model’s stability and confidence) are shown 
in Fig. 3.

In Fig. 2, the blue bars represent the performance of the regression 
models. The LR model achieved an R2 of 0.88, explaining 88.27 % of the 
variance in Sed. The RMSE was 0.03, and the MAE was 0.02. The boot
strap R2 value was 0.91 (95 % CI: 0.87–0.94), indicating consistent 
performance across different data subsets. However, the model showed 

Fig. 2. Performance metrics comparison across various models.

Fig. 3. Bootstrap stability analysis across various models.
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slightly lower performance with an R2 of 0.86 and an RMSE of 0.03. The 
MAE of 0.02 was comparable to that of the LR model, suggesting similar 
accuracy in absolute terms. The bootstrap R2 of 0.91 (95 % CI: 
0.86–0.94) suggests that the HR model exhibited good metrics, though 
its overall performance and stability were marginally lower than the 
standard LR model. These results highlight that while linear models 
provide a baseline, capturing more complex relationships within the 
data may be possible.

Among ensemble models (green bars), the RF model outperformed 
the other models with an R2 of 0.91, an RMSE of 0.03, and an MAE of 
0.02. The bootstrap R2 of 0.93 (95 % CI: 0.90–0.95) indicates high 
performance and stability, making the RF model a robust choice for this 
specific dataset. The GB and XG models showed similar performance 
levels, with R2 values of around 0.87 and RMSE values of approximately 
0.04. Their identical MAEs of 0.03 suggest comparable accuracy in ab
solute terms. Bootstrap results (GB: R2 = 0.91, 95 % CI: 0.89–0.93; 
XGBoost: R2 = 0.91, 95 % CI: 0.90–0.93) indicate high stability, with 
XGBoost showing a slightly narrower CI. The Extra Trees (ET) model 
achieved an R2 of 0.87, an RMSE of 0.04, and an MAE of 0.03. Bootstrap 
R2 of 0.89 (95 % CI: 0.86–0.91) suggests good performance, though it 
demonstrates lower stability than the RF and boosting algorithms (GB 
and XG). The AB and BG models performed less than other ensemble 
models, with R2 values of 0.84 and 0.83, respectively. Their higher 
RMSE values (0.04 for both) and MAEs (0.03 for both) indicate less 
accurate predictions. The bootstrap results (AB: R2 = 0.89, 95 % CI: 
0.86–0.91; BG: R2 = 0.87, 95 % CI: 0.83–0.91) suggest lower stability, 
particularly for the BG model.

Overall, the best performance of the RF model among ensemble 
models, compared to the linear models (LR and HB), indicates that 
predictive performance benefits more from methods that reduce vari
ance through aggregation of multiple decision trees. This approach 
effectively captures complex and nonlinear relationships in the data 
while mitigating overfitting. Thus, ensemble models, particularly RF, 
emerge as effective models for improving prediction accuracy and sta
bility. Furthermore, the Meta-models demonstrated the potential to 
improve the predictive performance of linear and ensemble models, 
such as combining LR and HB – regression models; and RF, ET, GB, XG, 
AB, and BG – ensemble models), as shown in the subsequent paragraph.

Among Meta-models (yellow bars), the RF learner-based ensemble 
meta-model (ERF-M) achieved the highest R2 of 0.92 and the lowest 
RMSE of 0.03 compared to individual regression (LR, HB in blue bars), 
ensemble models (RF, ET, GB, XG, AB, and BG in green bars) and meta- 
models (RF learner based linear meta-model – LRF-M; GB learner based 
linear meta-model – LGB-M; GB learner based ensemble meta-model – 
EGB-M, in yellow bars). ERF-M model’s MAE of 0.02 shows exceptional 
predictive accuracy. Bootstrap R2 of 0.94 (95 % CI: 0.91–0.96) indicates 
both high performance and significant stability; therefore, this meta- 
modeling approach effectively leverages the strengths of its constitu
ent base models. The LRF-M also performed better, with an R2 of 0.89, 
RMSE of 0.03, and MAE of 0.03. Bootstrap R2 of 0.90 (95 % CI: 
0.86–0.93) demonstrates the substantial performance of the LRF-M 
model; however, it shows slightly less stability than the ERF-M model. 
The LGM-M model achieved an R2 of 0.86 with an RMSE of 0.04 and 
MAE of 0.03. Its bootstrap R2 of 0.90 (95 % CI: 0.88–0.92) indicates 
reasonable performance; however, it shows less stability than the other 
meta-models.

These results highlight the potential of meta-modeling approaches, 
particularly those incorporating RF as meta learner, to capture complex 
relationships in predicting Sed that individual models might miss. To 
further enhance model performance, the linear (LRF-M, LGB-M) and 
ensemble (ERF-M, EGB-M) meta-models were integrated using four 
ensemble learning procedures, as demonstrated in the following 
paragraph.

In Fig. 2, the red bars show the performance of linear (L) and 
ensemble (E) meta-models based on simple averaging (SA-L, SA-E), 
weighting averaging (WA-L, WA-E), stacking with linear regression 

(SLR-L, SLR-E) and voting regression (VR-L, VR-E). In results, SLR-E 
emerged as the best-performing procedure, achieving a relatively high 
R2 of 0.93 and a lower RMSE of 0.03. The MAE of 0.02 indicates strong 
predictive accuracy. The bootstrap R2 of 0.94 (95 % CI: 0.93–0.96) 
shows high performance and stability, suggesting that the stacking 
procedure effectively combines the strengths of ensemble based meta- 
models. SA-L and WA-L models exhibited identical model performance 
with R2 of 0.87, RMSE of 0.03, MAE of 0.035 and bootstrap R2 of 0.90 
(95 % CI: 0.88–0.93). On the other hand, SA-E and WA-E outperformed 
SA-L and WA-L, with R2 of 0.89 and bootstrap R2 of 0.92 (95 % CI: 
0.89–0.93). SLR-L model showed least performance compared to other 
models. Lastly, VR-L and VR-E models showed moderate performance, 
with VR-E achieving R2 of 0.87, bootstrap R2 of 0.91 (95 % CI: 
0.88–0.93) and slightly outperformed VR-L that showed R2 of 0.86 and 
bootstrap R2 of 0.90 (95 % CI: 0.87–0.93). The voting procedure still 
improved some individual models, highlighting the potential benefits of 
combining different models.

This analysis provides essential insights into the comparative per
formance of classical models, ensemble methods, and meta-modeling 
techniques within predictive analytics. Classical models (LR and HB) 
attained acceptable predictive accuracy. However, their inherent limi
tations in capturing complex, nonlinear relationships in the dataset are 
evident due to their lower R2 values relative to ensemble models. On the 
bright side, ensemble models substantially enhance predictive perfor
mance. RF model demonstrates high efficacy while maintaining 
consistent stability. Meta modeling exhibits an important advancement 
in predictive modeling. It combines the strengths of both linear and 
ensemble methods. ERF-M demonstrates increased model performance 
compared to individual classical and ensemble models. Further, the 
ensemble learning procedures, mainly SLR-E show its effectiveness in 
maximizing model performance by outperforming all the models.

3.3. Feature importance analysis

Feature importance analysis exhibits the multi-dimensional (uni
variate, bivariate, and multivariate) impact of operating parameters 
(AS, PF and AD) contributing to the impact Sed. It also assesses the multi- 
dimensional contributions of models used to develop SLR-E model in 
predicting Sed, as shown in Fig. 4. The AS emerges as the most impactful 
parameter for predicting Sed, with an importance score of 0.58. This 
indicates that the tractor’s speed significantly affects lumbar spine 
stress, as higher speeds are associated with increased vibration magni
tudes. Previous studies have also found AS to be a critical factor in vi
bration exposure, demonstrating that increased speed amplifies 
vibration transmission, enhancing the Sed response (Singh et al., 2019).

The interaction between AS and PF ranks as the second most 
important feature, with an importance score of 0.40. This suggests that 
the combined effects of speed and the force needed to pull the rotary 
tiller are vital in determining lumbar spine stress. Specifically, the in
fluence of speed on Sed is moderated by the resistance faced during ro
tary tilling. AD is the third most influential parameter, with a score of 
0.32. In contrast, PF and the interaction between AS and AD show 
relatively low importance scores (approximately 0.1) when considered 
individually. While PF has limited significance, its interaction with AS (i. 
e., AS × PF) highlights its increased relevance when combined with the 
tractor’s speed. Thus, PF should not be ignored, especially when com
bined with AS. A combination of RF, ET, GB, XG, AB, and BR consistently 
showed the highest importance scores of 0.99. These models collectively 
contribute significantly to the predictive performance of the meta- 
models. Notably, combinations that included five out of these six 
models maintained near-perfect importance scores (0.92), indicating 
their critical role in effectively capturing the complexities of the data.

Combinations that excluded more than one of these models experi
enced a slight decline in importance, averaging around 0.80. A further 
reduction in the number of models led to a more noticeable drop in 
importance scores, with pairs averaging around 0.4 and individual 
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models around 0.2. These findings underscore the value of employing 
multiple ensemble methods to enhance predictive accuracy and stability 
within the meta-model. They also emphasize the importance of diversity 
in model selection for achieving optimal performance.

4. Discussion and implications

This study provides information on several essential aspects of Sed 
assessment and its prediction in real-field rotary tillage operations. It 
examines the contributions of operational factors such as speed, pulling 
force, and tillage depth to influencing Sed. The study compares classical 
prediction models with ensemble-based approaches, showing that 
ensemble methods lead to improved accuracy due to their ability to 
capture complex, nonlinear relationships among variables. Meta- 
modeling and ensemble learning techniques enhance model perfor
mance by combining multiple learning algorithms to improve predictive 
power and generalization. Additionally, feature importance analysis 
helps clarify the contributing role of base models within the ensemble 
framework in Sed prediction.

The role of tractor speed in impacting Sed highlights the necessity for 
effective speed management strategies. Increased speed results in 
greater WBV exposure (Kumar et al., 2001; Scarlett et al., 2007; Servadio 
et al., 2007; Singh et al., 2019), leading to higher Sed. Higher speeds 
amplify the dynamic interactions between the tractor and the terrain, 
increasing the vibrational accelerations transmitted through the trac
tor’s chassis and, ultimately to the operator’s spine. Moreover, this 
relationship is consistent with the principles of vibration mechanics, 
where higher velocities lead to increased excitation frequencies and 

amplitudes, resulting in greater oscillation magnitudes. This finding is 
also consistent with the study for small vehicles (Grami et al., 2019). 
Furthermore, tillage depth demonstrates a moderate negative relation
ship with Sed. The inverse relationship between tillage depth and Sed 
suggests that deeper tillage may enhance the damping characteristics of 
the soil-machine system (Ahmadian et al., 2021). This damping effect 
possibly arises from increased soil resistance and cutting forces 
encountered at greater depths, which absorb and dissipate vibrational 
energy more effectively by providing greater mechanical impedance 
between the tractor and the soil (Singh et al., 2019). This phenomenon 
highlights the potential for optimizing tillage practices for agronomic 
benefits and improving operator comfort and reducing health risks. The 
complex balance between operational efficiency and operator safety 
becomes evident, indicating that deeper tillage, within agronomic 
limits, could serve as a practical intervention to attenuate WBV expo
sure. Further investigation into the soil-structure interaction during 
deep tillage could provide insights into designing implements that 
minimize vibration transmission. Further research is essential to explore 
the interactions among soil properties, tillage implements, and vibration 
transmission. Investigating a broader range of soil types and moisture 
conditions will provide valuable insights into how different factors 
affect vibration transmission, leading to more effective strategies for 
minimizing vibration in agricultural practices. Although pulling force 
alone showed a minimal direct impact on Sed, its interaction with 
operating speed revealed a more substantial effect. This interaction 
suggests that the mechanical demands placed on the tractor during 
operations involving higher pulling forces and speeds can mutually 
elevate vibration levels experienced by the operator. The tractor’s en
gine and transmission systems, while effective at isolating vibrations 
from pulling forces under normal conditions, may become less efficient 
when compounded by increased speeds. This information emphasizes 
the importance of considering combined operational parameters rather 
than isolated factors when assessing WBV exposure risks. Moreover, as 
tractors operate under varying conditions, the implications of this 
relationship extend towards strategies such as enhancing the mechanical 
properties of suspension systems, employing advanced 
vibration-damping technologies, and optimizing operational parameters 
to reduce WBV exposure.

From a predictive modeling perspective, this study demonstrates the 
dominance of ensemble models over classical linear models in capturing 
the complex, nonlinear interactions between operational parameters 
and Sed. This study demonstrates the capability of an RF-based meta- 
learner to enhance prediction accuracy and stability. The SLR-E based 
ensemble learning procedure particularly shows its ability to develop an 
effective Sed prediction framework. This method allows the model to 
detect subtle, nonlinear interactions between factors such as tractor 
speed, pulling force, and tillage depth, all of which directly impact the 
Sed levels experienced by operators. The model effectively compensates 
for individual models’ limitations by combining their strengths, leading 
to more reliable Sed predictions under varying operational conditions. 
The practical implications of this modeling framework are significant. 
Agricultural environments are highly dynamic, with rapidly changing 
conditions such as soil type, moisture, and equipment settings influ
encing vibration exposure. Simple linear models may fail to account for 
these complexities, but ensemble models such as RF and stacking 
methods excel by identifying patterns that may not be immediately 
apparent. For example, fluctuations in tractor speed or sudden changes 
in pulling force due to soil inconsistencies can lead to elevated WBV 
levels.

In addition, applying feature importance analysis is important in 
interpreting the contribution of various base models that form the SLR-E 
model. It directly informs which models are most effective for Sed pre
diction and whether their inclusion justifies the computational cost. This 
study highlights that the SLR-E model benefits significantly from the 
collective contribution of all base models—Random Forest, Extra Trees, 
Gradient Boosting, XGBoost, AdaBoost, and Bagging. The findings show 

Fig. 4. Feature importance analysis across univariate, bivariate, and multi
variate combinations of the base model used to develop SLR-E.
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that excluding these models leads to a noticeable decline in predictive 
accuracy, confirming that their combined use is essential for achieving 
the best performance. This result suggests that reducing the number of 
models would compromise the system’s ability to capture the complex 
interactions inherent in Sed prediction. Therefore, including all base 
models maximizes prediction accuracy, justifying their role in the 
ensemble despite the added computational complexity (Ganaie et al., 
2022).

From an application standpoint, the ensemble model, with its ability 
to learn from these complex interactions, ensures more accurate real- 
time Sed predictions. This enhanced predictive capability is essential 
for developing intelligent, proactive safety systems. Incorporating 
intelligent speed adaptation systems into this framework can provide a 
comprehensive solution. Such systems could adjust tractor ride param
eters based on real-time vibration feedback, ensuring that Sed levels 
remain within safe limits. For example, Singh et al. (2023a) introduced 
an IoT-based solution (ThingSpeak enabled) to monitor real-time WBV 
levels and issue immediate alerts when vibrations exceed recommended 
thresholds. This system could be further improved by integrating 
real-time Sed monitoring, allowing for dynamic adjustments in tractor 
speed, tillage depth, or other operational parameters to continuously 
maintain operator safety without compromising productivity. More
over, the predictive model could be integrated into tractor control sys
tems, enabling automated adjustments to operational parameters based 
on terrain and task-specific requirements. This integration opens possi
bilities for developing autonomous or semi-autonomous tractors with 
advanced safety features, enhancing efficiency and operator well-being.

Integrating advanced ML models into real-time systems could 
significantly enhance occupational safety by reducing the risk of 
musculoskeletal disorders associated with WBV exposure. These systems 
eliminate the need for constant manual intervention, helping maintain 
safety standards under varying agricultural conditions. Furthermore, the 
data collected from these systems can inform policy decisions and 
establish more accurate exposure limits tailored to specific agricultural 
tasks and environments. Furthermore, the model’s adaptability makes it 
valuable for immediate risk management and long-term prevention 
strategies, aligning with international standards such as ISO 2631-5. 
Future research could explore integrating biomechanical models of the 
human body to better understand the impact of WBV on different body 
segments, enhancing the predictive capability of Sed models. Developing 
personalized models considering operator-specific factors such as body 
mass index and posture could further refine risk assessments.

Implementing such advanced predictive systems also presents op
portunities for collaboration between agricultural engineers, data sci
entists, and occupational health experts. Interdisciplinary research 
could develop comprehensive guidelines and best practices for vibration 
exposure management in agriculture. In a nutshell, adopting ensemble- 
based predictive models for Sed improves the accuracy of WBV exposure 
assessments. It paves the way for innovative solutions to enhance 
operator safety, optimize agricultural operations, and inform regulatory 
frameworks.

5. Conclusions, limitations and future research direction

The study emphasizes that controlling operational speed is para
mount in reducing WBV exposure and associated health risks in tractor 
operators. Adjusting agricultural depth and managing the interaction 
between speed and pulling force can mitigate vibration levels. Among 
the tested models, the RF model performed best as an individual pre
dictor (R2 of 0.91), while the RF-based meta-learner further improved 
accuracy (R2 of 0.92). Furthermore, stacking ensemble model (i.e., SLR- 
E) outperformed all others (R2 of 0.93). This clearly demonstrates that 
aggregating multiple ensemble learners (RF and GB) enhances predic
tive accuracy and robustness. These results significantly contribute to 
existing literature by demonstrating practical and highly effective stra
tegies (multimodal ensemble approach) for predicting Sed in agricultural 

contexts.
Despite these contributions, the study has certain limitations. Key 

operational factors such as tractor speed, pulling force, and tillage depth 
were analyzed, but other elements, including soil strength, terrain 
variability, and tillage implement types were not considered. Future 
research should expand operational parameters to improve model 
robustness and applicability across diverse agricultural settings. Addi
tionally, the study’s dataset was constrained to a single tractor and five 
operators, limiting the generalizability of results. Incorporating multiple 
tractor models, larger operator samples, and varied geographic condi
tions would enhance model training and validation, ensuring wider 
applicability. Moreover, operator-specific characteristics (e.g., posture, 
anthropometry) influence WBV exposure but were not included. Future 
studies should integrate biomechanical and human-centric variables for 
personalized risk assessments. On a positive note, a recent study suc
cessfully tested similar ensemble models (as used in the present study) 
for predicting head vibrations based on different driving and seating 
conditions, demonstrating the relevance of ensemble techniques in 
vehicle dynamics (Singh et al., 2025). The multimodal framework 
introduced in this study presents an advanced application of ensemble 
modeling, with strong potential for predicting WBV-related parameters. 
Further validation, refinement, and adaptation for occupational health 
applications are encouraged.

The current study employed two classical models (Linear and Huber 
Regression), five ensemble models (RF, Extra Trees, Gradient Boosting, 
XGBoost, AdaBoost, Bagging), and two meta-learners (RF and GB). 
While the SLR-E model combined these six ensemble models, future 
research should explore advanced ensemble methods such as LightGBM 
(Yan et al., 2019), CatBoost (Antypas et al., 2022), and other recently 
developed algorithms. Additional meta-learners such as Multi-Layer 
Perceptron (Al Bataineh et al., 2022), Blending Regressor 
(Chatzimparmpas et al., 2021) and Stacked Ensemble (Zian et al., 2021) 
should also be investigated. Evaluating these models and meta-learners 
is important, as a smaller set of models with comparable or better per
formance reduces computational complexity. This enhances the SLR-E 
model’s scalability for real-time agricultural predictions, enabling 
faster and more efficient decision-making while ensuring accuracy.

Explainability is another key challenge. This study relied on feature 
importance as an Explainable AI method. However, alternative tech
niques such as Shapley Additive Explanations (SHAP) (Al-Najjar et al., 
2023), Local Interpretable Model-agnostic Explanations (LIME) (Zafar 
and Khan, 2021) and Partial Dependence Plots (Ryo, 2022) may also be 
tested to further enhance transparency and trustworthiness of predictive 
models. The key difference between feature importance and methods 
such as SHAP and LIME lies in the level of interpretability they provide. 
While feature importance offers a global view of feature impacts across 
all predictions, SHAP and LIME provide local explanations for individual 
predictions. Integrating these advanced methods into the modeling 
process will significantly enhance the practical interpretability and 
acceptability of predictive models, making them more applicable in 
real-world scenarios where understanding the underlying mechanics of 
predictions is as important as the predictions themselves.

In addition to ensemble modeling, hybrid models that integrate 
ensemble techniques with deep learning approaches (e.g., Convolu
tional Neural Networks and Long Short-Term Memory networks) could 
enhance Sed predictions by capturing spatial and temporal dependencies 
in WBV data. Such models would be particularly valuable for real-time 
monitoring, where balancing accuracy, efficiency, and scalability is 
crucial for agricultural operations.

As AI-driven predictive models scale up, addressing computational 
complexity and its impact on processing speed, energy consumption, 
and sustainability becomes important. High-complexity models may 
require greater computational power, leading to delays (latency) in real- 
time predictions and increasing carbon emissions. If models consume 
excessive energy, they could pose a sustainability challenge, particularly 
in resource-intensive applications. Future studies should investigate 
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strategies to optimize model efficiency without sacrificing accuracy. 
Techniques such as model compression, adaptive learning, and Green AI 
approaches could help develop more sustainable predictive systems. 
While this study does not yet explore these aspects due to data limita
tions, future research should integrate scalability and energy efficiency 
considerations to ensure practical and responsible AI deployment.

CRediT authorship contribution statement

Amandeep Singh: Writing – original draft, Software, Methodology, 
Formal analysis, Conceptualization. Naser Nawayseh: Writing – review 

& editing, Methodology, Conceptualization. Philippe Doyon-Poulin: 
Writing – review & editing, Data curation. Stephan Milosavljevic: 
Writing – review & editing, Supervision. Krishna N. Dewangan: 
Writing – review & editing, Software, Methodology. Yash Kumar: 
Software. Siby Samuel: Supervision, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Appendix 

Appendix 1 
Hyperparameter Specifications from Base Models to Ensemble Meta Models

Model Method Hyperparameters

Linear Models LR fit_intercept: True, copy_X: True, n_jobs: None, positive: False
HR epsilon: 1.35, alpha: 0.0001, fit_intercept: True, max_iter: 100, tol: 1e-05

Ensemble 
Models

RF n_estimators: 100, criterion: ’squared_error’, max_features: ’auto’, bootstrap: True, min_samples_split: 2, min_samples_leaf: 1, random_state: 42
ET n_estimators: 100, criterion: ’squared_error’, max_features: ’auto’, bootstrap: False, min_samples_split: 2, min_samples_leaf: 1, random_state: 42
FB n_estimators: 100, learning_rate: 0.1, max_depth: 3, loss: ’squared_error’, subsample: 1.0, min_samples_split: 2, random_state: 42
XGB n_estimators: 100, learning_rate: 0.1, max_depth: 6, subsample: 1.0, colsample_bytree: 1.0, objective: ’reg:squarederror’, random_state: 42
AB n_estimators: 50, learning_rate: 1.0, loss: ’linear’, base_estimator: None, random_state: 42
B n_estimators: 10, max_samples: 1.0, max_features: 1.0, bootstrap: True, random_state: 42

Meta-Models RF (ML) n_estimators: 50, criterion: ’squared_error’, max_depth: None, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, bootstrap: True, 
random_state: 42

GB (ML) n_estimators: 50, learning_rate: 0.1, max_depth: 3, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, loss: ’squared_error’, random_state: 
42

RF (ME) n_estimators: 50, criterion: ’squared_error’, max_depth: None, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, bootstrap: True, 
random_state: 42

GB (ME) n_estimators: 50, learning_rate: 0.1, max_depth: 3, min_samples_split: 2, min_samples_leaf: 1, max_features: None, loss: ’squared_error’, 
random_state: 42

Meta- 
Ensembling

SA N/A
WA weights: [0.5, 0.5]
SLR fit_intercept: True, copy_X: True, n_jobs: None
VR estimators: [(‘rf’, RandomForestRegressor(n_estimators = 100, random_state = 42)), (‘gbm’, GradientBoostingRegressor(n_estimators = 100, 

random_state = 42))]

Note: LR: Linear Regression; HR: Huber Regression; RF: Random Forest; ET: Extra Trees; GB: Gradient Boosting; XGB: XGBoost; AB: AdaBoost; B: Bagging; RF (ML): Random 
Forest based Meta-Linear Model; GB (ML): Gradient Boost based Meta-Linear Model; RF (ME): Random Forest based Meta-Ensemble Model; GB (ME): Gradient Boost based 
Meta-Ensemble Model; SA: Simple Averaging; WA: Weighted Averaging; SLR: Stacking with Linear Regression; and VR: Voting Regressor.

Data availability

Data will be made available on request.
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