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Accurate prediction of lumbar health is necessary for developing effective ergonomic strategies for tractor op-
erators exposed to whole-body vibration. This study aims to predict static compression dose (Seq), a key measure
of lumbar spine stress as per ISO 2631-5, by comparing classical regression and ensemble models. Three tractor
operation parameters (average speed, average depth, and pulling force) are considered to assess Seq during rotary
tillage operation. The performance of two classical models (Linear and Huber regression) is compared with five
ensemble models (Random Forest, Gradient Boosting, XGBoost, AdaBoost, and Bagging regressors) in predicting
Sed- The comparison identifies the best models in each category, with linear regression achieving a mean
bootstrap R? of 0.91 (95 % CI: 0.87 to 0.94) and Random Forest achieving 0.93 (95 % CI: 0.90 to 0.95). To further
enhance performance, meta-models are developed using two meta-learners (Random Forest and Gradient
Boosting) to integrate classical and ensemble models. These models are optimized using different ensemble
strategies: simple averaging, weighted averaging, stacking, and voting regressors. Among these, the stacking
method proves most effective, achieving a mean bootstrap R2 0f 0.94 (95 % CI: 0.93 to 0.96). Feature importance
analysis reveals that the multi-model combination of ensemble models achieves the highest predictive score
(0.99) for Seq. These findings demonstrate that ensemble models outperform classical models in predicting Sed,
particularly when combined through stacking methods. This advancement has significant implications for
improving occupational health and safety among tractor operators, potentially leading to better ergonomic
tractor designs aimed at reducing lumbar spine stress.

1. Introduction

From 1971 to 2021, the number of tractors used in Indian agriculture
increased from 0.168 to 9.173 million (Mehta et al., 2024). India now
manufactures approximately one-third of global tractor production
(Mehta et al., 2019), making it a significant player in the global agri-
cultural machinery industry. This significant tractor usage and produc-
tion growth emphasizes addressing operator health and safety issues.
However, occupational health concerns faced by agricultural workers in

India have historically received limited attention (Dewangan et al.,
2023), despite the increased mechanization. With the high degree of
tractor use, a safe and comfortable working environment for the oper-
ator becomes important to enhance productivity and operator satisfac-
tion (Benos et al., 2020). Moreover, farmers are becoming more aware of
ergonomic risks, including physical exposures and injury hazards.

One of the major ergonomic concerns associated with agricultural
vehicles is the exposure of operators to high levels of whole-body vi-
bration (WBV). WBV contributes significantly to health risks,
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discomfort, and reduced productivity (Bovenzi and Betta, 1994; Milo-
savljevic et al., 2011; Zeng et al., 2017). Studies have consistently
demonstrated that WBV is transmitted primarily through the seat to the
buttocks and back, and through the floor or footrests to the feet (Mehta
and Tewari, 2000; Rakheja et al., 2020). In extreme cases, vibration
exposure is sufficiently severe to compromise operator balance and
control (Lines et al., 1995). The four principal adverse effects of
increased ride vibrations include degraded health, impaired activities,
degraded comfort, and motion sickness (ISO 2631-1:1997, 2010). Pro-
longed exposure to vibrations, particularly near the resonance frequency
of the human body, significantly contributes to vibration-induced
discomfort (Griffin, 2007). Furthermore, vibration exposure contrib-
utes to fatigue, reducing productivity among tractor operators (Krajnak,
2018). Studies have also shown that vehicle operators have the risk of
developing musculoskeletal disorders, particularly lower back pain
(Eger et al., 2008; Killen and Eger, 2016; Tiemessen et al., 2007;
Wahlstrom et al., 2018; Zanatta et al., 2019; Zhang et al., 2019; Zhang
and Guo, 2023). Lower back disorders are more prevalent among tractor
operators compared to the general population due to the greater
magnitude of tractor vibration compared to on-road vehicles (Bovenzi
and Betta, 1994; Singh et al., 2018b). These findings emphasize the
urgent need to develop effective strategies aimed at reducing WBV
exposure among tractor operators, thereby mitigating health risks and
improving overall well-being and productivity.

Several studies have reported elevated WBV exposures in operators
various vehicles. Marin et al. (2017) reported that the 8-h vibration dose
value (VDV(8)) and 8-h static compression dose (Seq) were significantly
higher in mining vehicles. Based on these exposures, it was recom-
mended to reduce vehicle operator time by 50-66 % to remain within
daily exposure (A(8)) vibration tolerance limits. Langer et al. (2015)
examined the effect of four-wheel drive on WBYV in tractors with large
square balers, showing that the four-wheel-drive mode, especially dur-
ing downhill operations, increased WBV exposure, highlighting its in-
fluence on the longitudinal dynamics and vibration exposure of tractors.
Chang et al. (2011) found that dump truck operators in Taiwan expe-
rienced vibration exposures exceeding ISO 2631-1 (1997) action limits.
Another studies identified high vibration exposure levels during on-farm
vehicle use in New Zealand and Canada (Milosavljevic et al., 2012; Zeng
et al.,, 2017). In India, Sed during rotary soil tillage operations was
evaluated and found to range between 0.38 and 0.76 MPa, indicating a
moderate risk of adverse health effects (Singh et al., 2019). Forward
speed and pulling force had significant effects on Seq4, contributing 64.43
% and 24.73 % of the variation, respectively. Similarly, Singh et al.
(2022) reported that speed and water level significantly affected Sed
during operations with water tankers, exceeding ISO 2631-5 limits.
These findings highlight the critical need for addressing WBV exposure
specifically within agricultural contexts in India.

Previous research has focused on measuring vibration exposure
under various operational conditions, examining factors such as seat
cushions, cab suspension, shock absorbers, tire pressure, and vehicle
speed, predominantly focusing on overall ride comfort. For example,
Mehta and Tewari (2010) measured WBV exposure during operations
with different implements, evaluating various cushion materials for
damping characteristics, finding high-density polyurethane foam most
effective. Velmurugan et al. (2012) reported WBV levels exceeding ISO
2631-1:1997 upper limits during tractor semitrailer operations under
varying conditions, highlighting significant health risks. Nguyen and
Inaba (2011) investigated the impact of tire characteristics on vibrations
transmitted to tractors, emphasizing influences from speed and tire
pressure. Adams et al. (2004) demonstrated improvements in tractor
ride comfort through central tire inflation systems, highlighting signif-
icant reductions in resonant frequencies and ride discomfort. Deprez
et al. (2005) optimized nonlinear suspension systems in off-road vehi-
cles using in situ measurements, effectively enhancing comfort. Singh
et al. (2018a) assessed tractor ride comfort during rotary tillage opera-
tions and found WBYV levels ranged from "fairly uncomfortable” to
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"uncomfortable” (according to ISO 2631-1:1997; see section C.2.3 —
comfort reactions to vibration environments in this standard), largely
driven by tractor velocity and draft force. Another study further vali-
dated the substantial WBV exposure exceeding ISO 2631-1: 1997 rec-
ommended exposure action values (Singh et al., 2023b). In addition, the
frequency response at the seat pan was primarily observed within the
4-7 Hz and 8-13 Hz frequency ranges, with the vibration energy fluc-
tuating across this low-frequency spectrum during tillage.

Despite extensive WBV research, predictive modeling of WBV-
associated health risks using advanced machine learning (ML) tech-
niques remains underexplored (Chan et al., 2022; Prakash et al., 2025;
Singh et al., 2023c). Based on the literature review, several studies have
successfully applied ML techniques in different vibration exposure
contexts, including bus operators (Hanumegowda and Gnanasekaran,
2022), knee joint vibration signals (Zheng et al., 2021), gender differ-
ences in horizontal transmissibility (AlShabi and Nawayseh, 2022),
high-impact shovel loading operations in surface mining (Ali and
Frimpong, 2021), diagnosed whole-body vibration faults in aeroengines
(Fei and Bai, 2013), and dumper operators in mining (Ramar et al.,
2023). However, ML applications for tractor operators remain signifi-
cantly underexplored, with existing studies focusing on psychophysio-
logical workload (Lu et al., 2020; Pei et al., 2019), workload assessment
(Hota et al., 2023), driving performance (Zhao et al., 2024) and ride
comfort (Singh et al., 2023c; Zhang et al., 2024). Critically, limited
attention has been given to health risk prediction, especially Seq (an
important health risk parameters to assess the lumbar spine stress from
WBV exposure). This limitation is particularly critical as tractor opera-
tors experience complex WBV exposures influenced by multiple
nonlinear factors such as variations in soil properties, implement
attachment/operating conditions, tractor speed fluctuations, driver
anthropometry etc., which traditional statistical methods struggle to
capture and model effectively. Advanced ML techniques can capture
these nonlinear interactions, making them highly suitable for devel-
oping robust prediction models (Chakraborty et al., 2024; Zhou et al.,
2024).

Given the diverse range of ML algorithms available, it is essential to
identify those that can leverage the strengths of multiple approaches to
capture complex nonlinear relationships and enhance predictive accu-
racy. While existing ML models show promise, there is still significant
potential to explore more advanced computational approaches, partic-
ularly ensemble methods (Abimannan et al., 2023; Campagner et al.,
2023; Mohammed and Kora, 2023; Yang et al., 2023). Ensemble models
are particularly effective in capturing nonlinear relationships mitigating
overfitting, and balancing bias and variance (Ganaie et al., 2022). While
most ML-based studies utilize single (individual) models to test their
predictive strength; an individual model’s performance may not always
be sufficient for practical implementation, particularly when consid-
ering dynamic operational conditions typical of agricultural environ-
ments. In such cases, multi-model ensemble approaches can combine
multiple algorithms and often outperform any single model (Jiang et al.,
2024; Manjunatha and Tsiotras, 2023). Although deep learning models
have gained popularity, they often face challenges (e.g., overfitting,
computational complexity), particularly with complex WBV datasets
(Jiang et al., 2024). Conversely, ensemble models typically require less
data to train, incur lower computational demands (Cao et al., 2020), and
are less prone to overfitting (Ganaie et al., 2022). Nonetheless, even
advanced ensemble approaches must address model transparency and
interpretability, which are essential for adoption in real-world settings,
especially in ergonomics and safety policies. Explainable AI (XAI)
techniques provide information into the influence of operational fea-
tures and the models used in multimodal approach for S¢q predictions,
enabling practitioners, policymakers, and designers to make informed
decisions such as tailoring interventions, optimizing tractor suspension
designs, implementing ergonomic seating solutions, and refining oper-
ational guidelines for different soil and terrain conditions.

The present study aims to develop an accurate and robust predictive
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model for assessing health risks associated with WBV exposure among
tractor operators during rotary soil tillage operation. Specifically, this
research evaluates health risk according to ISO 2631-5 by computing the
Sed parameter. The predictive performance of two classical models—-
Linear and Huber Regression—is compared with five ensemble mod-
els—Random Forest, Gradient Boosting, XGBoost (Extreme Gradient
Boosting), AdaBoost (Adaptive Boosting), and Bagging Regressors—in
predicting Seq. The bootstrap method evaluates model stability and
confidence intervals (Bhutamapuram and Sadam, 2022), aiming to
identify the optimal model within each category. Subsequently,
meta-models are developed separately from the classical and ensemble
models using two meta-learner methods (Random Forest and Gradient
Boosting) to improve prediction performance. These models are then
combined using four ensemble strategies: simple averaging, weighted
averaging, stacking with linear regression, and voting regressors
(Ganaie et al., 2022). Moreover, an XAl-based feature importance
analysis (Kumar and Taylor, 2024) is conducted to ensure transparency
and interpretability in understanding the importance of operational
parameters (tractor speed, pulling force and tool depth). Additionally,
predictive models (used to develop a multimodal) are tested to deter-
mine their impact on S.4. We hypothesize that ensemble-driven multi--
model approaches can demonstrate better performance in predicting Seq
under WBV exposures while maintaining interpretability through XAI
procedure.

2. Methodology

This section outlines the detailed research methodology for devel-
oping prediction models for predicting Seq. It includes the details about
participants, tractor ride features, target variable, experimentation,
feature engineering, classical and ensemble models, meta-model
development, ensemble-based meta-model development with different
methods (simple averaging, weighted averaging, stacking with linear
regression, and voting regressors), hyper tuning and optimization and
model interpretability approach. Fig. 1 illustrates the methodological
framework for the development of Ensemble Meta-Models.
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2.1. Participants

Tractor operators were recruited from Punjab Agricultural Univer-
sity (Ludhiana, India) based on the following criteria: (i) a minimum of
two years of tractor-driving experience, (ii) absence of any self-reported
musculoskeletal disorders, and (iii) no known hypersensitivity to vi-
bration. This selection aimed to ensure participants were sufficiently
experienced and capable of managing field-based tractor operations
under actual working conditions. Interested operators were initially
briefed on the study’s objectives and procedures. Those volunteered
underwent a screening process to confirm they met the inclusion
criteria. The final set of five participants was chosen because of limited
field availability. Unlike on-road studies, soil tillage experiments require
fresh field patches to maintain consistent soil conditions (such as
moisture content, soil strength, weed intensity etc.) across each exper-
iment run. Once a portion of the field has been tilled, its soil properties
changes, which would introduce variability and potentially confound
the vibration exposures. To ensure consistent exposure levels and reli-
able data, each participant performed three repeated experiments
without reusing the same tilled area. In this case, including more than
five participants would have required reusing the tilled area of the field,
potentially compromising data reliability. The study’s primary focus is
on data-driven prediction modeling rather than broad epidemiological
generalization. However, the selected participants reflect typical
anthropometric characteristics of young, healthy tractor operators in the
region, providing a reasonable foundation for training predictive models
on vibration exposure. While the findings are applicable to similar
working populations, further validation would be required for general-
izing the developed models to other demographic groups.

Prior to data collection, the study protocol was reviewed and
approved by the Institutional Ethics Committee of the GNDEC, Ludhiana
(India). Permission for experimental resources (such as field, tractor,
machinery and manpower) was granted by Punjab Agricultural Uni-
versity, Ludhiana (India) [VC-4545]. Written informed consent was
obtained from each participant in accordance with the Declaration of
Helsinki and institutional guidelines.

The five participating tractor operators were male, aged between 21
and 25 years (mean 22.8 years). Their heights ranged from 1.70 to 1.81
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m (mean 1.75 m), and their weights ranged from 65 to 79 kg (mean 71
kg), resulting in a mean body mass index (BMI) of 23.32 kg/m2. This
BMI range falls within normal limits and may reduce inter-participant
variability in certain anthropometric factors. This range also repre-
sents a typical BMI distribution for young tractor operators in the study
region. Therefore, these participants can be considered reasonably
representative of young, healthy tractor operators in this agricultural
setting. Including participants with a normal BMI helped reduce
anthropometric biases in assessing vibration-induced lumbar stress and
ensured a more reliable dataset for prediction model development.

2.2. Machinery, instrumentation and experimental design

The study was conducted in a wheat-harvested field. Prior to the
experiment, soil samples were collected from four random locations and
analyzed for texture according to ISO 14688-1:2002 standards. The soil
was categorized as sandy clay loam, with a composition of 66.25 % sand,
9.27 % silt, and 27 % clay. The soil moisture content was measured in
accordance with ISO 17892-1:2014, ranged from 48.61 % to 55.43 %.
Soil strength was measured using a digital cone penetrometer, with
values of approximately 12 kPa, 22 kPa, and 29 kPa at depths of 0-0.06
m, 0.05-0.11 m, and 0.10-0.16 m, respectively. A 2-wheel drive 41 kW
tractor (Model: FT 65 EPI Farmtrac, Make: Escort Kubota Limited, India)
was used for the experiments and was fitted with a standard
manufacturer-installed seat. This particular tractor was selected because
it is commonly used in the region. It represents typical power and
operational characteristics relevant to local farming practices. A rotary
tiller of dimensions 1.35 x 2.50 x 0.94 m and weighing 455 kg was
attached to the tractor. The working width of the rotary tiller was 2.13 m
and it was fitted with 48 C-shaped blades distributed across 8 flanges.
The tiller could tile soil up to a depth of 0.15 m. This tiller design is
popular among the farmers of the region due to its efficient soil-cutting
capabilities and lower energy consumption compared to alternative
rotary tillers (L or J shaped blades).

This study utilized Internet of Things (IoT) technology for remote
vibration measurement (Singh et al., 2023b). The system employed an
ESP8266 microcontroller to transmit vibration data to the cloud via
Wi-Fi, enabling real-time remote monitoring. The SV106 vibration
analyzer was integrated into the IoT system by connecting it to the
ESP8266 through an RJ45 Ethernet port. The microcontroller was pro-
grammed to read data from the analyzers through this interface, con-
verting the data into a format that could be transmitted via Wi-Fi. This
involved configuring the analyzers to output vibration data in a
compatible format (e.g., serial or analog output) that the ESP8266 could
process. We developed code in Arduino C++ that handled data acqui-
sition and Wi-Fi communication to send data on the cloud. The cloud
data could then be accessed through an Android application
(https://ergoamanl.web.app/#/), also available on desktop computers
for further analysis. This system allows for continuous, remote moni-
toring of vibration data without requiring manual data collection. More
details about the system can be found in the previous part of the pub-
lication (Singh et al., 2023c).

Taguchi’s Ly; orthogonal array was used to prepare a systematic
experiment design, consisting of 27 experiment trial conditions (Singh
et al., 2023c). Thus, a total of 405 experimental trials were performed by
the five participants, who performed 27 experiments, with each exper-
iment repeated three times. The WBV exposure to the tractor operators
was recorded for a trial distance of 30 m, with each trial lasting
approximately 38-50 s, depending on the speed range (0.6-0.8 m/s).
This duration includes the time required for the machinery to accelerate
and stabilize within the desired speed range before reaching the start of
the 30-m measurement section. Start and end points were pre-marked on
the field using visible reference points. Participants were instructed to
maintain their preferred sitting posture throughout the trials, ensuring
their back remained in contact with the seat’s backrest. Vibration ac-
celerations were recorded at the seat pan along the fore-and-aft (x),
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lateral (y), and vertical (z) axes during each experimental condition. The
sampling rate was 6000 samples per second for each axis, and a total of
405 experiments were conducted. Given that each experiment lasted
between 38 and 50 s, the total number of data samples collected ranged
from approximately 228 million to 300 million, depending on the exact
duration of each trial.

2.3. Ride features and feature engineering

This study includes three ride features: average speed (AS), pulling
force (PF), and average tool depth (AD) (Singh et al., 2023b, 2023c).
Participants were instructed to maintain the mean speed of the tractor
between 0.6 and 0.8 m/s. The Bureau of Indian Standards recommended
this speed for rotary tilling operations. Rotary tilling required a pulling
force of 2, 4, or 6 kN, depending on terrain conditions. The pulling force
was determined using a dynamometer attached between the tractor and
rotary tiller (Singh et al., 2019). The depth of operation were 0.10 m,
0.12m, and 0.14 m, respectively, for pulling forces of 2, 4, and 6 kN. The
target variable, i.e., Seq, was evaluated under different input conditions.
The Seq represents the mean daily dose of peak acceleration values
experienced at the lumbar spine. The procedure for evaluating Seq is
presented in detail in ISO 2631-5 (2018) and in previous publications
(Singh et al., 2022).

The original dataset contains three input features: AS, AD, and PF,
with Seq as the target variable. The featured engineering was performed
to create further derived features from the original to capture potential
nonlinear relationships and interactions between the original features.
This step is important for capturing complex relationships in the data
that may not be apparent in the original features. It was assumed that the
combined effect of two features might be more informative than their
individual effects. Therefore, three new interaction terms, AS x AD, AS
x PF, and AD x PF were generated by multiplying pairs of original
features. These interaction terms were added to the original feature set
to expand the input space from three to six features. This step included
feature analysis and selection to identify the most informative predictors
in developing Seq prediction model. The Pearson correlation matrix for
all six features was calculated (Peng et al., 2005). This correlation
analysis helped to identify potential multicollinearity issues and pro-
vided insights into the linear relationships between features. The mutual
information regression method was employed to quantify the statistical
dependency that helped capture both linear and nonlinear relationships
between the features and the target variable based on the computed
mutual information scores (Gong et al., 2024; Peng et al., 2005). The
correlation analysis helped identify potential redundancies and in-
teractions between features, while the mutual information-based selec-
tion helped identify the most informative features for the target variable,
potentially capturing nonlinear relationships that correlation analysis
might have missed. The features with higher mutual information scores
were selected to contribute as informative predictors to improve the
performance and interpretability of subsequent modeling steps.

2.4. Prediction modeling

2.4.1. Linear and ensemble models

Two model categories, i.e., classical linear and advanced ensemble
methods, were developed and compared to predict the S¢q in the present
study. Linear Regression (LR) was employed for linear models, which
assumes a direct linear relationship between features and the target
variable, and Huber Regression (HR) to mitigate the impact of outliers
(Feng and Wu, 2022). These models served as a baseline to further
compare with ensemble models. Five advanced techniques i.e., Random
Forest (RF), Extra Trees (ET), Gradient Boosting (GB), XGBoost (XG),
AdaBoost (AB), and Bagging (BG) Regressor was, used for ensemble
models (Gonzdlez et al., 2020). Random Forest and Extra Trees Re-
gressors were implemented with 100 estimators each, leveraging the
power of multiple decision trees with different splitting strategies.
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Gradient Boosting and XGBoost Regressors, also with 100 estimators,
were employed for their ability to sequentially improve predictions by
correcting errors in previous trees. Additionally, the AdaBoost Regressor
with 50 estimators and the Bagging Regressor with 10 estimators were
incorporated to reduce variance through random subsets of the data. All
models were trained on the same features selected using mutual infor-
mation scores to ensure fair comparison.

2.4.2. Development of meta-models

Meta models leveraged the strength of multiple base models,
including linear and ensemble models. Separate meta-models were
developed for linear models, integrating LR and HR, and for ensemble
models, by integrating RF, ET, GB, XG, AB, and BG. Each meta-model
had two different learners, i.e., RF and GB, resulting in four meta-
models, two for the linear models and two for the ensemble models.
Both meta-learners were set up with 50 estimators, providing sufficient
capacity to learn from diverse base model predictions while maintaining
reasonable training and prediction times. In RF, each estimator repre-
sents a decision tree, whereas in GB, it represents a boosting stage. This
configuration allows the meta-models to capture complex data re-
lationships without overfitting. The stacking process begins with cloning
the base models to ensure independence and prevent data leakage.
Meta-features were generated using Leave-One-Out cross-validation by
training each base model on all but one sample and predicting the held-
out sample (Varoquaux et al., 2017). This was repeated for all samples,
which resulted in out-of-fold predictions that formed the meta-features.
The meta-model training involved four key steps: cloning and preparing
base models, thus generating meta-features through cross-validation by
training each base model on the entire dataset and training the
meta-model (RF and GB) on the generated meta-features. The fitted base
models generated meta-features from input data during prediction. The
trained meta-models were used to produce the final prediction. This
multi-layered approach captures complex patterns potentially missed by
individual models (Jiang et al., 2024). By developing separate
meta-models for linear and ensemble base models, different model
complexities were explored, which affected the final predictions, thus
providing a robust framework for integrating diverse techniques and
improving Sed’s predictive performance.

2.4.3. Meta-modeling using ensemble learning approaches

After developing meta-models based on both linear and ensemble
base models, it was recognized that combining them could improve
predictive performance (Figueroa, 2024). This meta-ensemble approach
was motivated by two key reasons. First, it aimed to take advantage of
the strengths of each meta-learning algorithm (Manjunatha and Tsio-
tras, 2023), potentially capturing more complex patterns in predicting
Sed- Second, combining the meta-models was intended to reduce bias
and variance, resulting in more stable and generalizable predictions
(Ganaie et al., 2022). Four different methods were used separately to the
linear and ensemble meta-models to develop meta-ensembling models,
including simple averaging (SA), weighted averaging (WA), stacking
with linear regression (SLR), and voting regressors (VR) (Ganaie et al.,
2022). In simple averaging, the mean of predictions was calculated from
both meta-models. Weighted average assigned equal weights of 0.5 for
prediction. LR as a final layer was used for stacking to learn optimal
combinations of meta-model predictions. The VR combined RF and GB
estimators to make predictions based on majority voting. The perfor-
mance of these methods was compared to obtain the optimum ensem-
bled model.

2.5. Model evaluation, hypertuning and bootstrap analysis

The dataset consisted of 405 S.q measurements, with each mea-
surement representing the average Sed response for an individual
experiment trial. To ensure a balanced and unbiased evaluation, we split
the dataset into 284 training samples (70 %) and 121 testing samples
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(30 %), a commonly used ratio in machine learning to optimize bias-
variance trade-off. Before training, we applied standard preprocessing
techniques, including data normalization and outlier removal, to
enhance data consistency. We employed the Leave-One-Out (LOO)
cross-validation strategy for model validation (Varoquaux et al., 2017).
The hyperparameters for each model are shown in Appendix 1. Bayesian
optimization to fine-tune model parameters was used to improve per-
formance (Singh et al., 2023c). The models were evaluated based on a
set of performance metrics, namely mean absolute error (MAE), mean
squared error (MSE), root mean squared error (RMSE), and coefficient of
determination (R?). The MAE, MSE, and RMSE quantify prediction er-
rors. Lower values of the performance matrix indicate superior perfor-
mance. MAE measures the mean absolute difference between predicted
and actual values. MSE emphasizes larger errors by squaring differences.
RMSE provides an error metric. R? indicates the proportion of variance
in the target variable explained by the model. The values of the R? closer
to 1 suggest a better fit. The mean percentage error rate was also
calculated as a normalized measure of prediction error relative to actual
values.

The stability and reliability of the models were tested through
bootstrap analysis (Bhutamapuram and Sadam, 2022). Bootstrap is a
statistical technique that allows for the empirical estimation of the
sampling distribution of a statistic. Specifically, bootstrap resampling
was applied by creating 1000 resamples of the original dataset with
replacement. The models and their calculated R? values were retrained
for each resample, which provided a distribution of R? estimates for each
model. This approach enabled a more reliable estimate of the true per-
formance metrics of the models than a single calculation on the original
dataset. The 95 % confidence intervals (CIs) were calculated using the
percentile method, where the lower and upper bounds correspond to the
2.5th and 97.5th percentiles of the bootstrap distribution
(Bhutamapuram and Sadam, 2022; Henderson, 2005). Narrow CIs of the
models show high stability, which suggests consistent predictive per-
formance across different subsets of the data. Conversely, wider in-
tervals suggest greater variability and sensitivity to the specific data
points used for training.

2.6. Model interpretability

Permutation-based feature importance analysis, an Explainable Al
approach, was used to interpret the influence of each input feature on
the model’s predictive performance (Kumar and Taylor, 2024). This
method involves randomly shuffling individual features and measuring
the resulting change in model accuracy, which provides insights into
each feature’s relative importance. This analysis reveals the relative
significance of each feature in predicting Seq. Thus, it is easy to identify
the most influential factors in the model. The analysis was further
extended to examine the importance of base models within the
ensemble. This involved assessing base models’ univariate, bivariate and
multivariate impact in contributions to the ensembled meta-model. It
allowed us to identify the models and their combinations to achieve
optimal predictive accuracy for Seq.

2.7. Software

MATLAB R2024a was used for data analysis and ML tasks. Key
toolboxes included ‘Statistics and ML Toolbox’ for implementing various
regression models, cross-validation, and performance metrics. The
‘fittm’, ‘fitrensemble’ and ‘fitrsvm’ were employed for linear regression,
’ensemble methods like Random Forest and Gradient Boosting, and for
Support Vector Regression, respectively. Cross-validation was imple-
mented using the ‘crossval’ function with Leave-One-Out method. The
‘fscmrmr’ function performed minimum redundancy and maximum
relevance (mRMR) for feature selection. Performance metrics were
calculated using built-in functions like ‘mse’ for MSE and irsquared’ for
R? values.
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3. Results and discussion
3.1. Descriptive and statistical analysis

The results showed a mean S.q value of 0.55 MPa with a standard
deviation of 0.11 MPa. The range of S¢q varied from 0.35 MPa to 0.790
MPa with an interquartile range (IQR) of 0.16 MPa. The distribution of
Seq was slightly right-skewed (skewness: 0.37) and platykurtic (kurtosis:
—0.56), indicating a flatter-than-normal distribution.

Correlation analysis revealed significant relationships between
operational parameters and Seq. A strong positive correlation was
observed between AS and Seq (R = 0.77, p < 0.00001), indicating that
higher speeds substantially increase the vibration experienced by the
operators. These findings align with the fundamental principles of vi-
bration mechanics, where higher operational speeds correspond to
increased vibration magnitude transmitted through the vehicle chassis.
AD showed a moderate negative correlation with Seq (R = —0.54, p <
0.01). This inverse relationship may be due to a damping effect from soil
engagement, where deeper penetration by the rotary tiller increases
cutting force and dampens oscillation, reducing vibration magnitude. It
is also possible that soil type and conditions not captured in the current
dataset influenced this relationship. PF exhibited a weak positive cor-
relation with S¢q (r = 0.14, p > 0.05). While increased pulling force
slightly raised vibration levels, the effect was insignificant compared to
the influence of speed and tool depth. This suggests that the tractor’s
engine and transmission system may effectively isolate much of the
additional vibration generated by increased pulling forces.

Linear regression analysis further confirmed the results of the study.
AS emerged as the strongest predictor of Seq (R = 0.77, p < 0.00001). It
was observed that for every unit increase in mean speed, Seq increased
by approximately 1.06 MPa, emphasizing the important role of speed
management in mitigating health risks associated with WBV. The
negative relationship between AD and S.q (slope = —3.72, R?= 0.29,p
< 0.01) reinforces the earlier correlation findings. The relationship be-
tween the PF and S.q was weak and insignificant R? = 0.02, p =
0.4777). Interaction between AS and PF showed a moderate positive
relationship with Seq (R2 = 0.14, p = 0.0509). This suggests that the
combined effect of speed and pulling force may be more relevant than
pulling force alone. Other interactive terms (AS x AD, AD x PF, and AS
x AD x PF) demonstrated weak relationships with Seq and were not
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significant.

ANOVA test result (F = 104.56, p < 0.00001) provided strong evi-
dence that the combined effect of all variables significantly influences
Sed- The model, incorporating all variables and their interactions,
significantly improved the prediction of Seq, except for the three-way
interaction term (AS x AD x PF), which did not significantly
contribute to the model’s performance. This suggests that while the full
model improves prediction, the highest-order interaction term did not
add meaningful explanatory power.

3.2. Model performance and reliability

The results of the model performance metrics (MSE, RMSE, R2, and
MAE) are presented in Fig. 2. In addition, the results of the Bootstrap
analysis (used to assess the model’s stability and confidence) are shown
in Fig. 3.

In Fig. 2, the blue bars represent the performance of the regression
models. The LR model achieved an R? of 0.88, explaining 88.27 % of the
variance in Seq. The RMSE was 0.03, and the MAE was 0.02. The boot-
strap R? value was 0.91 (95 % CI: 0.87-0.94), indicating consistent
performance across different data subsets. However, the model showed
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slightly lower performance with an R2 of 0.86 and an RMSE of 0.03. The
MAE of 0.02 was comparable to that of the LR model, suggesting similar
accuracy in absolute terms. The bootstrap R? of 0.91 (95 % CI:
0.86-0.94) suggests that the HR model exhibited good metrics, though
its overall performance and stability were marginally lower than the
standard LR model. These results highlight that while linear models
provide a baseline, capturing more complex relationships within the
data may be possible.

Among ensemble models (green bars), the RF model outperformed
the other models with an R? of 0.91, an RMSE of 0.03, and an MAE of
0.02. The bootstrap R? of 0.93 (95 % CI: 0.90-0.95) indicates high
performance and stability, making the RF model a robust choice for this
specific dataset. The GB and XG models showed similar performance
levels, with R? values of around 0.87 and RMSE values of approximately
0.04. Their identical MAEs of 0.03 suggest comparable accuracy in ab-
solute terms. Bootstrap results (GB: R? = 0.91, 95 % CI. 0.89-0.93;
XGBoost: R? = 0.91, 95 % CI: 0.90-0.93) indicate high stability, with
XGBoost showing a slightly narrower CI. The Extra Trees (ET) model
achieved an R? of 0.87, an RMSE of 0.04, and an MAE of 0.03. Bootstrap
R2 of 0.89 (95 % CI: 0.86-0.91) suggests good performance, though it
demonstrates lower stability than the RF and boosting algorithms (GB
and XG). The AB and BG models performed less than other ensemble
models, with R? values of 0.84 and 0.83, respectively. Their higher
RMSE values (0.04 for both) and MAEs (0.03 for both) indicate less
accurate predictions. The bootstrap results (AB: R? = 0.89, 95 % CI:
0.86-0.91; BG: R? = 0.87, 95 % CI: 0.83-0.91) suggest lower stability,
particularly for the BG model.

Overall, the best performance of the RF model among ensemble
models, compared to the linear models (LR and HB), indicates that
predictive performance benefits more from methods that reduce vari-
ance through aggregation of multiple decision trees. This approach
effectively captures complex and nonlinear relationships in the data
while mitigating overfitting. Thus, ensemble models, particularly RF,
emerge as effective models for improving prediction accuracy and sta-
bility. Furthermore, the Meta-models demonstrated the potential to
improve the predictive performance of linear and ensemble models,
such as combining LR and HB - regression models; and RF, ET, GB, XG,
AB, and BG - ensemble models), as shown in the subsequent paragraph.

Among Meta-models (yellow bars), the RF learner-based ensemble
meta-model (ERF-M) achieved the highest R? of 0.92 and the lowest
RMSE of 0.03 compared to individual regression (LR, HB in blue bars),
ensemble models (RF, ET, GB, XG, AB, and BG in green bars) and meta-
models (RF learner based linear meta-model — LRF-M; GB learner based
linear meta-model — LGB-M; GB learner based ensemble meta-model —
EGB-M, in yellow bars). ERF-M model’s MAE of 0.02 shows exceptional
predictive accuracy. Bootstrap R2 of 0.94 (95 % CI: 0.91-0.96) indicates
both high performance and significant stability; therefore, this meta-
modeling approach effectively leverages the strengths of its constitu-
ent base models. The LRF-M also performed better, with an R? of 0.89,
RMSE of 0.03, and MAE of 0.03. Bootstrap R? of 0.90 (95 % CL:
0.86-0.93) demonstrates the substantial performance of the LRF-M
model; however, it shows slightly less stability than the ERF-M model.
The LGM-M model achieved an R? of 0.86 with an RMSE of 0.04 and
MAE of 0.03. Its bootstrap R? of 0.90 (95 % CI: 0.88-0.92) indicates
reasonable performance; however, it shows less stability than the other
meta-models.

These results highlight the potential of meta-modeling approaches,
particularly those incorporating RF as meta learner, to capture complex
relationships in predicting Seq that individual models might miss. To
further enhance model performance, the linear (LRF-M, LGB-M) and
ensemble (ERF-M, EGB-M) meta-models were integrated using four
ensemble learning procedures, as demonstrated in the following
paragraph.

In Fig. 2, the red bars show the performance of linear (L) and
ensemble (E) meta-models based on simple averaging (SA-L, SA-E),
weighting averaging (WA-L, WA-E), stacking with linear regression
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(SLR-L, SLR-E) and voting regression (VR-L, VR-E). In results, SLR-E
emerged as the best-performing procedure, achieving a relatively high
R? of 0.93 and a lower RMSE of 0.03. The MAE of 0.02 indicates strong
predictive accuracy. The bootstrap R? of 0.94 (95 % CI: 0.93-0.96)
shows high performance and stability, suggesting that the stacking
procedure effectively combines the strengths of ensemble based meta-
models. SA-L and WA-L models exhibited identical model performance
with R of 0.87, RMSE of 0.03, MAE of 0.035 and bootstrap R? of 0.90
(95 % CI: 0.88-0.93). On the other hand, SA-E and WA-E outperformed
SA-L and WA-L, with R® of 0.89 and bootstrap R* of 0.92 (95 % CI:
0.89-0.93). SLR-L model showed least performance compared to other
models. Lastly, VR-L and VR-E models showed moderate performance,
with VR-E achieving R% of 0.87, bootstrap R? of 0.91 (95 % CI:
0.88-0.93) and slightly outperformed VR-L that showed R? of 0.86 and
bootstrap R? of 0.90 (95 % CI: 0.87-0.93). The voting procedure still
improved some individual models, highlighting the potential benefits of
combining different models.

This analysis provides essential insights into the comparative per-
formance of classical models, ensemble methods, and meta-modeling
techniques within predictive analytics. Classical models (LR and HB)
attained acceptable predictive accuracy. However, their inherent limi-
tations in capturing complex, nonlinear relationships in the dataset are
evident due to their lower R? values relative to ensemble models. On the
bright side, ensemble models substantially enhance predictive perfor-
mance. RF model demonstrates high efficacy while maintaining
consistent stability. Meta modeling exhibits an important advancement
in predictive modeling. It combines the strengths of both linear and
ensemble methods. ERF-M demonstrates increased model performance
compared to individual classical and ensemble models. Further, the
ensemble learning procedures, mainly SLR-E show its effectiveness in
maximizing model performance by outperforming all the models.

3.3. Feature importance analysis

Feature importance analysis exhibits the multi-dimensional (uni-
variate, bivariate, and multivariate) impact of operating parameters
(AS, PF and AD) contributing to the impact Seq. It also assesses the multi-
dimensional contributions of models used to develop SLR-E model in
predicting Seq, as shown in Fig. 4. The AS emerges as the most impactful
parameter for predicting Seq, with an importance score of 0.58. This
indicates that the tractor’s speed significantly affects lumbar spine
stress, as higher speeds are associated with increased vibration magni-
tudes. Previous studies have also found AS to be a critical factor in vi-
bration exposure, demonstrating that increased speed amplifies
vibration transmission, enhancing the S¢q response (Singh et al., 2019).

The interaction between AS and PF ranks as the second most
important feature, with an importance score of 0.40. This suggests that
the combined effects of speed and the force needed to pull the rotary
tiller are vital in determining lumbar spine stress. Specifically, the in-
fluence of speed on Seq is moderated by the resistance faced during ro-
tary tilling. AD is the third most influential parameter, with a score of
0.32. In contrast, PF and the interaction between AS and AD show
relatively low importance scores (approximately 0.1) when considered
individually. While PF has limited significance, its interaction with AS (i.
e., AS x PF) highlights its increased relevance when combined with the
tractor’s speed. Thus, PF should not be ignored, especially when com-
bined with AS. A combination of RF, ET, GB, XG, AB, and BR consistently
showed the highest importance scores of 0.99. These models collectively
contribute significantly to the predictive performance of the meta-
models. Notably, combinations that included five out of these six
models maintained near-perfect importance scores (0.92), indicating
their critical role in effectively capturing the complexities of the data.

Combinations that excluded more than one of these models experi-
enced a slight decline in importance, averaging around 0.80. A further
reduction in the number of models led to a more noticeable drop in
importance scores, with pairs averaging around 0.4 and individual
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Fig. 4. Feature importance analysis across univariate, bivariate, and multi-
variate combinations of the base model used to develop SLR-E.

models around 0.2. These findings underscore the value of employing
multiple ensemble methods to enhance predictive accuracy and stability
within the meta-model. They also emphasize the importance of diversity
in model selection for achieving optimal performance.

4. Discussion and implications

This study provides information on several essential aspects of Seq
assessment and its prediction in real-field rotary tillage operations. It
examines the contributions of operational factors such as speed, pulling
force, and tillage depth to influencing Seq. The study compares classical
prediction models with ensemble-based approaches, showing that
ensemble methods lead to improved accuracy due to their ability to
capture complex, nonlinear relationships among variables. Meta-
modeling and ensemble learning techniques enhance model perfor-
mance by combining multiple learning algorithms to improve predictive
power and generalization. Additionally, feature importance analysis
helps clarify the contributing role of base models within the ensemble
framework in Sed prediction.

The role of tractor speed in impacting S.q highlights the necessity for
effective speed management strategies. Increased speed results in
greater WBV exposure (Kumar et al., 2001; Scarlett et al., 2007; Servadio
et al., 2007; Singh et al., 2019), leading to higher S¢q. Higher speeds
amplify the dynamic interactions between the tractor and the terrain,
increasing the vibrational accelerations transmitted through the trac-
tor’s chassis and, ultimately to the operator’s spine. Moreover, this
relationship is consistent with the principles of vibration mechanics,
where higher velocities lead to increased excitation frequencies and
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amplitudes, resulting in greater oscillation magnitudes. This finding is
also consistent with the study for small vehicles (Grami et al., 2019).
Furthermore, tillage depth demonstrates a moderate negative relation-
ship with Seq. The inverse relationship between tillage depth and Seq
suggests that deeper tillage may enhance the damping characteristics of
the soil-machine system (Ahmadian et al., 2021). This damping effect
possibly arises from increased soil resistance and cutting forces
encountered at greater depths, which absorb and dissipate vibrational
energy more effectively by providing greater mechanical impedance
between the tractor and the soil (Singh et al., 2019). This phenomenon
highlights the potential for optimizing tillage practices for agronomic
benefits and improving operator comfort and reducing health risks. The
complex balance between operational efficiency and operator safety
becomes evident, indicating that deeper tillage, within agronomic
limits, could serve as a practical intervention to attenuate WBV expo-
sure. Further investigation into the soil-structure interaction during
deep tillage could provide insights into designing implements that
minimize vibration transmission. Further research is essential to explore
the interactions among soil properties, tillage implements, and vibration
transmission. Investigating a broader range of soil types and moisture
conditions will provide valuable insights into how different factors
affect vibration transmission, leading to more effective strategies for
minimizing vibration in agricultural practices. Although pulling force
alone showed a minimal direct impact on Seq, its interaction with
operating speed revealed a more substantial effect. This interaction
suggests that the mechanical demands placed on the tractor during
operations involving higher pulling forces and speeds can mutually
elevate vibration levels experienced by the operator. The tractor’s en-
gine and transmission systems, while effective at isolating vibrations
from pulling forces under normal conditions, may become less efficient
when compounded by increased speeds. This information emphasizes
the importance of considering combined operational parameters rather
than isolated factors when assessing WBV exposure risks. Moreover, as
tractors operate under varying conditions, the implications of this
relationship extend towards strategies such as enhancing the mechanical
properties  of  suspension  systems, employing advanced
vibration-damping technologies, and optimizing operational parameters
to reduce WBV exposure.

From a predictive modeling perspective, this study demonstrates the
dominance of ensemble models over classical linear models in capturing
the complex, nonlinear interactions between operational parameters
and Seq. This study demonstrates the capability of an RF-based meta-
learner to enhance prediction accuracy and stability. The SLR-E based
ensemble learning procedure particularly shows its ability to develop an
effective Seq prediction framework. This method allows the model to
detect subtle, nonlinear interactions between factors such as tractor
speed, pulling force, and tillage depth, all of which directly impact the
Sed levels experienced by operators. The model effectively compensates
for individual models’ limitations by combining their strengths, leading
to more reliable Sq predictions under varying operational conditions.
The practical implications of this modeling framework are significant.
Agricultural environments are highly dynamic, with rapidly changing
conditions such as soil type, moisture, and equipment settings influ-
encing vibration exposure. Simple linear models may fail to account for
these complexities, but ensemble models such as RF and stacking
methods excel by identifying patterns that may not be immediately
apparent. For example, fluctuations in tractor speed or sudden changes
in pulling force due to soil inconsistencies can lead to elevated WBV
levels.

In addition, applying feature importance analysis is important in
interpreting the contribution of various base models that form the SLR-E
model. It directly informs which models are most effective for Seq pre-
diction and whether their inclusion justifies the computational cost. This
study highlights that the SLR-E model benefits significantly from the
collective contribution of all base models—Random Forest, Extra Trees,
Gradient Boosting, XGBoost, AdaBoost, and Bagging. The findings show
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that excluding these models leads to a noticeable decline in predictive
accuracy, confirming that their combined use is essential for achieving
the best performance. This result suggests that reducing the number of
models would compromise the system’s ability to capture the complex
interactions inherent in S¢q prediction. Therefore, including all base
models maximizes prediction accuracy, justifying their role in the
ensemble despite the added computational complexity (Ganaie et al.,
2022).

From an application standpoint, the ensemble model, with its ability
to learn from these complex interactions, ensures more accurate real-
time Seq predictions. This enhanced predictive capability is essential
for developing intelligent, proactive safety systems. Incorporating
intelligent speed adaptation systems into this framework can provide a
comprehensive solution. Such systems could adjust tractor ride param-
eters based on real-time vibration feedback, ensuring that Seq levels
remain within safe limits. For example, Singh et al. (2023a) introduced
an IoT-based solution (ThingSpeak enabled) to monitor real-time WBV
levels and issue immediate alerts when vibrations exceed recommended
thresholds. This system could be further improved by integrating
real-time S¢q monitoring, allowing for dynamic adjustments in tractor
speed, tillage depth, or other operational parameters to continuously
maintain operator safety without compromising productivity. More-
over, the predictive model could be integrated into tractor control sys-
tems, enabling automated adjustments to operational parameters based
on terrain and task-specific requirements. This integration opens possi-
bilities for developing autonomous or semi-autonomous tractors with
advanced safety features, enhancing efficiency and operator well-being.

Integrating advanced ML models into real-time systems could
significantly enhance occupational safety by reducing the risk of
musculoskeletal disorders associated with WBV exposure. These systems
eliminate the need for constant manual intervention, helping maintain
safety standards under varying agricultural conditions. Furthermore, the
data collected from these systems can inform policy decisions and
establish more accurate exposure limits tailored to specific agricultural
tasks and environments. Furthermore, the model’s adaptability makes it
valuable for immediate risk management and long-term prevention
strategies, aligning with international standards such as ISO 2631-5.
Future research could explore integrating biomechanical models of the
human body to better understand the impact of WBV on different body
segments, enhancing the predictive capability of S.q models. Developing
personalized models considering operator-specific factors such as body
mass index and posture could further refine risk assessments.

Implementing such advanced predictive systems also presents op-
portunities for collaboration between agricultural engineers, data sci-
entists, and occupational health experts. Interdisciplinary research
could develop comprehensive guidelines and best practices for vibration
exposure management in agriculture. In a nutshell, adopting ensemble-
based predictive models for Seq improves the accuracy of WBV exposure
assessments. It paves the way for innovative solutions to enhance
operator safety, optimize agricultural operations, and inform regulatory
frameworks.

5. Conclusions, limitations and future research direction

The study emphasizes that controlling operational speed is para-
mount in reducing WBV exposure and associated health risks in tractor
operators. Adjusting agricultural depth and managing the interaction
between speed and pulling force can mitigate vibration levels. Among
the tested models, the RF model performed best as an individual pre-
dictor (R? of 0.91), while the RF-based meta-learner further improved
accuracy (R? of 0.92). Furthermore, stacking ensemble model (i.e., SLR-
E) outperformed all others (R? of 0.93). This clearly demonstrates that
aggregating multiple ensemble learners (RF and GB) enhances predic-
tive accuracy and robustness. These results significantly contribute to
existing literature by demonstrating practical and highly effective stra-
tegies (multimodal ensemble approach) for predicting Seq in agricultural
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contexts.

Despite these contributions, the study has certain limitations. Key
operational factors such as tractor speed, pulling force, and tillage depth
were analyzed, but other elements, including soil strength, terrain
variability, and tillage implement types were not considered. Future
research should expand operational parameters to improve model
robustness and applicability across diverse agricultural settings. Addi-
tionally, the study’s dataset was constrained to a single tractor and five
operators, limiting the generalizability of results. Incorporating multiple
tractor models, larger operator samples, and varied geographic condi-
tions would enhance model training and validation, ensuring wider
applicability. Moreover, operator-specific characteristics (e.g., posture,
anthropometry) influence WBV exposure but were not included. Future
studies should integrate biomechanical and human-centric variables for
personalized risk assessments. On a positive note, a recent study suc-
cessfully tested similar ensemble models (as used in the present study)
for predicting head vibrations based on different driving and seating
conditions, demonstrating the relevance of ensemble techniques in
vehicle dynamics (Singh et al., 2025). The multimodal framework
introduced in this study presents an advanced application of ensemble
modeling, with strong potential for predicting WBV-related parameters.
Further validation, refinement, and adaptation for occupational health
applications are encouraged.

The current study employed two classical models (Linear and Huber
Regression), five ensemble models (RF, Extra Trees, Gradient Boosting,
XGBoost, AdaBoost, Bagging), and two meta-learners (RF and GB).
While the SLR-E model combined these six ensemble models, future
research should explore advanced ensemble methods such as LightGBM
(Yan et al., 2019), CatBoost (Antypas et al., 2022), and other recently
developed algorithms. Additional meta-learners such as Multi-Layer
Perceptron (Al Bataineh et al, 2022), Blending Regressor
(Chatzimparmpas et al., 2021) and Stacked Ensemble (Zian et al., 2021)
should also be investigated. Evaluating these models and meta-learners
is important, as a smaller set of models with comparable or better per-
formance reduces computational complexity. This enhances the SLR-E
model’s scalability for real-time agricultural predictions, enabling
faster and more efficient decision-making while ensuring accuracy.

Explainability is another key challenge. This study relied on feature
importance as an Explainable AI method. However, alternative tech-
niques such as Shapley Additive Explanations (SHAP) (Al-Najjar et al.,
2023), Local Interpretable Model-agnostic Explanations (LIME) (Zafar
and Khan, 2021) and Partial Dependence Plots (Ryo, 2022) may also be
tested to further enhance transparency and trustworthiness of predictive
models. The key difference between feature importance and methods
such as SHAP and LIME lies in the level of interpretability they provide.
While feature importance offers a global view of feature impacts across
all predictions, SHAP and LIME provide local explanations for individual
predictions. Integrating these advanced methods into the modeling
process will significantly enhance the practical interpretability and
acceptability of predictive models, making them more applicable in
real-world scenarios where understanding the underlying mechanics of
predictions is as important as the predictions themselves.

In addition to ensemble modeling, hybrid models that integrate
ensemble techniques with deep learning approaches (e.g., Convolu-
tional Neural Networks and Long Short-Term Memory networks) could
enhance S¢q predictions by capturing spatial and temporal dependencies
in WBV data. Such models would be particularly valuable for real-time
monitoring, where balancing accuracy, efficiency, and scalability is
crucial for agricultural operations.

As Al-driven predictive models scale up, addressing computational
complexity and its impact on processing speed, energy consumption,
and sustainability becomes important. High-complexity models may
require greater computational power, leading to delays (latency) in real-
time predictions and increasing carbon emissions. If models consume
excessive energy, they could pose a sustainability challenge, particularly
in resource-intensive applications. Future studies should investigate
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strategies to optimize model efficiency without sacrificing accuracy.
Techniques such as model compression, adaptive learning, and Green Al
approaches could help develop more sustainable predictive systems.
While this study does not yet explore these aspects due to data limita-
tions, future research should integrate scalability and energy efficiency
considerations to ensure practical and responsible AI deployment.
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Appendix
Appendix 1
Hyperparameter Specifications from Base Models to Ensemble Meta Models
Model Method Hyperparameters
Linear Models LR fit_intercept: True, copy_X: True, n_jobs: None, positive: False
HR epsilon: 1.35, alpha: 0.0001, fit_intercept: True, max_iter: 100, tol: 1e-05
Ensemble RF n_estimators: 100, criterion: squared_error’, max_features: ’auto’, bootstrap: True, min_samples_split: 2, min_samples_leaf: 1, random state: 42
Models ET n_estimators: 100, criterion: *squared_error’, max_features: *auto’, bootstrap: False, min_samples_split: 2, min_samples_leaf: 1, random _state: 42
FB n_estimators: 100, learning_rate: 0.1, max_depth: 3, loss: *squared_error’, subsample: 1.0, min_samples_split: 2, random_state: 42
XGB n_estimators: 100, learning_rate: 0.1, max_depth: 6, subsample: 1.0, colsample_bytree: 1.0, objective: 'reg:squarederror’, random_state: 42
AB n_estimators: 50, learning rate: 1.0, loss: ’linear’, base_estimator: None, random _state: 42
B n_estimators: 10, max_samples: 1.0, max_features: 1.0, bootstrap: True, random_state: 42
Meta-Models RF (ML) n_estimators: 50, criterion: *squared_error’, max_depth: None, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, bootstrap: True,
random_state: 42
GB (ML) n_estimators: 50, learning_rate: 0.1, max_depth: 3, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, loss: squared_error’, random _state:
42
RF (ME) n_estimators: 50, criterion: *squared_error’, max_depth: None, min_samples_split: 2, min_samples_leaf: 1, max_features: 1.0, bootstrap: True,
random_state: 42
GB (ME) n_estimators: 50, learning rate: 0.1, max_depth: 3, min_samples_split: 2, min_samples_leaf: 1, max_features: None, loss: ’squared_error’,
random_state: 42
Meta- SA N/A
Ensembling WA weights: [0.5, 0.5]
SLR fit_intercept: True, copy_X: True, n_jobs: None
VR estimators: [(‘rf’, RandomForestRegressor(n_estimators = 100, random _state = 42)), (‘gbm’, GradientBoostingRegressor(n_estimators = 100,

random_state = 42))]

Note: LR: Linear Regression; HR: Huber Regression; RF: Random Forest; ET: Extra Trees; GB: Gradient Boosting; XGB: XGBoost; AB: AdaBoost; B: Bagging; RF (ML): Random
Forest based Meta-Linear Model; GB (ML): Gradient Boost based Meta-Linear Model; RF (ME): Random Forest based Meta-Ensemble Model; GB (ME): Gradient Boost based
Meta-Ensemble Model; SA: Simple Averaging; WA: Weighted Averaging; SLR: Stacking with Linear Regression; and VR: Voting Regressor.

Data availability
Data will be made available on request.
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