<  Retour au portail Polytechnique Montréal

EEG-driven arm movement decoding: combining connectivity and amplitude features for enhanced brain–computer interface performance

Hamidreza Darvishi, Ahmadreza Mohammadi, Mohammad Hossein Maghami, Meysam Sadeghi et Mohamad Sawan

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (14MB)
[img] Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (24kB)
Afficher le résumé
Cacher le résumé

Abstract

Brain–computer interfaces (BCIs) translate electroencephalography (EEG) signals into control commands, offering potential solutions for motor-impaired individuals. While traditional BCI studies often focus solely on amplitude variations or inter-channel connectivity, movement-related brain activity is inherently dynamic, involving interactions across regions and frequency bands. We propose that combining amplitude-based (filter bank common spatial patterns, FBCSP) and phase-based connectivity features (phase-locking value, PLV) improves decoding accuracy. EEG signals from ten healthy subjects were recorded during arm movements, with electromyography (EMG) as ground truth. After preprocessing (resampling, normalization, bandpass filtering), FBCSP and multi-lag PLV features were fused, and the ReliefF algorithm selected the most informative subset. A feedforward neural network achieved average metrics of: Pearson correlation 0.829 ± 0.077, R-squared value 0.675 ± 0.126, and root mean square error (RMSE) 0.579 ± 0.098 in predicting EMG amplitudes indicative of arm movement angles. Analysis highlighted contributions from both FBCSP and PLV, particularly in the 4–8 Hz and 24–28 Hz bands. This fusion approach, augmented by data-driven feature selection, significantly enhances movement decoding accuracy, advancing robust neuroprosthetic control systems.

Mots clés

Département: Département de génie électrique
Organismes subventionnaires: Shahid Rajaee Teacher Training University
Numéro de subvention: 5973/89
URL de PolyPublie: https://publications.polymtl.ca/66073/
Titre de la revue: Bioengineering (vol. 12, no 6)
Maison d'édition: Multidisciplinary Digital Publishing Institute
DOI: 10.3390/bioengineering12060614
URL officielle: https://doi.org/10.3390/bioengineering12060614
Date du dépôt: 09 juin 2025 17:03
Dernière modification: 26 nov. 2025 17:48
Citer en APA 7: Darvishi, H., Mohammadi, A., Hossein Maghami, M., Sadeghi, M., & Sawan, M. (2025). EEG-driven arm movement decoding: combining connectivity and amplitude features for enhanced brain–computer interface performance. Bioengineering, 12(6), 614 (23 pages). https://doi.org/10.3390/bioengineering12060614

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document