Hamidreza Darvishi, Ahmadreza Mohammadi, Mohammad Hossein Maghami, Meysam Sadeghi et Mohamad Sawan
Article de revue (2025)
|
Libre accès au plein texte de ce document Version finale avant publication Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (14MB) |
|
|
|
Libre accès au plein texte de ce document Matériel supplémentaire Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (24kB) |
Abstract
Brain–computer interfaces (BCIs) translate electroencephalography (EEG) signals into control commands, offering potential solutions for motor-impaired individuals. While traditional BCI studies often focus solely on amplitude variations or inter-channel connectivity, movement-related brain activity is inherently dynamic, involving interactions across regions and frequency bands. We propose that combining amplitude-based (filter bank common spatial patterns, FBCSP) and phase-based connectivity features (phase-locking value, PLV) improves decoding accuracy. EEG signals from ten healthy subjects were recorded during arm movements, with electromyography (EMG) as ground truth. After preprocessing (resampling, normalization, bandpass filtering), FBCSP and multi-lag PLV features were fused, and the ReliefF algorithm selected the most informative subset. A feedforward neural network achieved average metrics of: Pearson correlation 0.829 ± 0.077, R-squared value 0.675 ± 0.126, and root mean square error (RMSE) 0.579 ± 0.098 in predicting EMG amplitudes indicative of arm movement angles. Analysis highlighted contributions from both FBCSP and PLV, particularly in the 4–8 Hz and 24–28 Hz bands. This fusion approach, augmented by data-driven feature selection, significantly enhances movement decoding accuracy, advancing robust neuroprosthetic control systems.
Mots clés
| Département: | Département de génie électrique |
|---|---|
| Organismes subventionnaires: | Shahid Rajaee Teacher Training University |
| Numéro de subvention: | 5973/89 |
| URL de PolyPublie: | https://publications.polymtl.ca/66073/ |
| Titre de la revue: | Bioengineering (vol. 12, no 6) |
| Maison d'édition: | Multidisciplinary Digital Publishing Institute |
| DOI: | 10.3390/bioengineering12060614 |
| URL officielle: | https://doi.org/10.3390/bioengineering12060614 |
| Date du dépôt: | 09 juin 2025 17:03 |
| Dernière modification: | 26 nov. 2025 17:48 |
| Citer en APA 7: | Darvishi, H., Mohammadi, A., Hossein Maghami, M., Sadeghi, M., & Sawan, M. (2025). EEG-driven arm movement decoding: combining connectivity and amplitude features for enhanced brain–computer interface performance. Bioengineering, 12(6), 614 (23 pages). https://doi.org/10.3390/bioengineering12060614 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
