<  Retour au portail Polytechnique Montréal

Physics-informed neural networks with trainable sinusoidal activation functions for approximating the solutions of the Navier-Stokes equations

Amirhossein Khademi et Steven Dufour

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (6MB)
Afficher le résumé
Cacher le résumé

Abstract

We present TSA-PINN, a novel Physics-Informed Neural Network (PINN) that leverages a Trainable Sinusoidal Activation (TSA) mechanism to approximate solutions to the Navier-Stokes equations. By incorporating neuronwise sinusoidal activation functions with trainable frequencies and a dynamic slope recovery mechanism, TSAPINN achieves superior accuracy and convergence. Its ability to dynamically adjust activation frequencies enables efficient modeling of complex fluid behaviors, reducing training time and computational cost. Our testing goes beyond canonical problems, to study less-explored and more challenging scenarios, which have typically posed difficulties for prior models. Various numerical tests underscore the efficacy of the TSA-PINN model across five different scenarios. These include steady-state two-dimensional flows in a lid-driven cavity at two different Reynolds numbers; a cylinder wake problem characterized by oscillatory fluid behavior; and two time-dependent three-dimensional turbulent flow cases. In the turbulent cases, the focus is on detailed near-wall phenomena - including the viscous sub-layer, buffer layer, and log-law region—as well as the complex interactions among eddies of various scales. Both numerical and quantitative analyses demonstrate that TSA-PINN offers substantial improvements over conventional PINN models. This research advances physics-informed machine learning, setting a new benchmark for modeling dynamic systems in scientific computing and engineering.

Mots clés

Département: Département de mathématiques et de génie industriel
URL de PolyPublie: https://publications.polymtl.ca/65937/
Titre de la revue: Computer Physics Communications (vol. 314)
Maison d'édition: Elsevier B.V.
DOI: 10.1016/j.cpc.2025.109672
URL officielle: https://doi.org/10.1016/j.cpc.2025.109672
Date du dépôt: 03 juin 2025 12:03
Dernière modification: 20 nov. 2025 05:05
Citer en APA 7: Khademi, A., & Dufour, S. (2025). Physics-informed neural networks with trainable sinusoidal activation functions for approximating the solutions of the Navier-Stokes equations. Computer Physics Communications, 314, 109672 (15 pages). https://doi.org/10.1016/j.cpc.2025.109672

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document