Amirhossein Khademi et Steven Dufour
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (6MB) |
Abstract
We present TSA-PINN, a novel Physics-Informed Neural Network (PINN) that leverages a Trainable Sinusoidal Activation (TSA) mechanism to approximate solutions to the Navier-Stokes equations. By incorporating neuronwise sinusoidal activation functions with trainable frequencies and a dynamic slope recovery mechanism, TSAPINN achieves superior accuracy and convergence. Its ability to dynamically adjust activation frequencies enables efficient modeling of complex fluid behaviors, reducing training time and computational cost. Our testing goes beyond canonical problems, to study less-explored and more challenging scenarios, which have typically posed difficulties for prior models. Various numerical tests underscore the efficacy of the TSA-PINN model across five different scenarios. These include steady-state two-dimensional flows in a lid-driven cavity at two different Reynolds numbers; a cylinder wake problem characterized by oscillatory fluid behavior; and two time-dependent three-dimensional turbulent flow cases. In the turbulent cases, the focus is on detailed near-wall phenomena - including the viscous sub-layer, buffer layer, and log-law region—as well as the complex interactions among eddies of various scales. Both numerical and quantitative analyses demonstrate that TSA-PINN offers substantial improvements over conventional PINN models. This research advances physics-informed machine learning, setting a new benchmark for modeling dynamic systems in scientific computing and engineering.
Mots clés
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| URL de PolyPublie: | https://publications.polymtl.ca/65937/ |
| Titre de la revue: | Computer Physics Communications (vol. 314) |
| Maison d'édition: | Elsevier B.V. |
| DOI: | 10.1016/j.cpc.2025.109672 |
| URL officielle: | https://doi.org/10.1016/j.cpc.2025.109672 |
| Date du dépôt: | 03 juin 2025 12:03 |
| Dernière modification: | 20 nov. 2025 05:05 |
| Citer en APA 7: | Khademi, A., & Dufour, S. (2025). Physics-informed neural networks with trainable sinusoidal activation functions for approximating the solutions of the Navier-Stokes equations. Computer Physics Communications, 314, 109672 (15 pages). https://doi.org/10.1016/j.cpc.2025.109672 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
