<  Retour au portail Polytechnique Montréal

Enhancing photoacoustic imaging for lung diagnostics and BCI communication: simulation of cavity structures artifact generation and evaluation of noise reduction techniques

Chengpeng Chai, Xi Yang, Xurong Gao, Junhui Shi, Xiaojun Wang, Hongfei Song, Yun-Hsuan Chen et Mohamad Sawan

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

Pandemics like COVID-19 have highlighted the potential of Photoacoustic imaging (PAI) for Brain-Computer Interface (BCI) communication and lung diagnostics. However, PAI struggles with the clear imaging of blood vessels in areas like the lungs and brain due to their cavity structures. This paper presents a simulation model to analyze the generation and propagation mechanism within phantom tissues of PAI artifacts, focusing on the evaluation of both Anisotropic diffusion filtering (ADF) and Non-local mean (NLM) filtering, which significantly reduce noise and eliminate artifacts and signify a pivotal point for selecting artifact-removal algorithms under varying conditions of light distribution. Experimental validation demonstrated the efficacy of our technique, elucidating the effect of light source uniformity on artifact-removal performance. The NLM filtering simulation and ADF experimental validation increased the peak signal-to-noise ratio by 11.33% and 18.1%, respectively. The proposed technique adds a promising dimension for BCI and is an accurate imaging solution for diagnosing lung diseases.

Mots clés

Département: Département de génie électrique
Organismes subventionnaires: Westlake University (Hangzhou, China), Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
Numéro de subvention: 041030080118, 2020R01005
URL de PolyPublie: https://publications.polymtl.ca/65408/
Titre de la revue: Frontiers in Bioengineering and Biotechnology (vol. 12)
Maison d'édition: Frontiers Media
DOI: 10.3389/fbioe.2024.1452865
URL officielle: https://doi.org/10.3389/fbioe.2024.1452865
Date du dépôt: 07 mai 2025 16:17
Dernière modification: 14 févr. 2026 23:47
Citer en APA 7: Chai, C., Yang, X., Gao, X., Shi, J., Wang, X., Song, H., Chen, Y.-H., & Sawan, M. (2024). Enhancing photoacoustic imaging for lung diagnostics and BCI communication: simulation of cavity structures artifact generation and evaluation of noise reduction techniques. Frontiers in Bioengineering and Biotechnology, 12, 19 pages. https://doi.org/10.3389/fbioe.2024.1452865

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document