<  Retour au portail Polytechnique Montréal

Precise and low-power closed-loop neuromodulation through algorithm-integrated circuit co-design

Jie Yang, Shiqi Zhao, Siyu Lin, Qiming Hou, Junzhe Wang et Mohamad Sawan

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (3MB)
Afficher le résumé
Cacher le résumé

Abstract

Implantable neuromodulation devices have significantly advanced treatments for neurological disorders such as Parkinson’s disease, epilepsy, and depression. Traditional open-loop devices like deep brain stimulation (DBS) and spinal cord stimulators (SCS) often lead to overstimulation and lack adaptive precision, raising safety and side-effect concerns. Next-generation closed-loop systems offer real-time monitoring and on-device diagnostics for responsive stimulation, presenting a significant advancement for treating a range of brain diseases. However, the high false alarm rates of current closed-loop technologies limit their efficacy and increase energy consumption due to unnecessary stimulations. In this study, we introduce an artificial intelligence-integrated circuit co-design that targets these issues and using an online demonstration system for closed-loop seizure prediction to showcase its effectiveness. Firstly, two neural network models are obtained with neural-network search and quantization strategies. A binary neural network is optimized for minimal computation with high sensitivity and a convolutional neural network with a false alarm rate as low as 0.1/h for false alarm rejection. Then, a dedicated low-power processor is fabricated in 55 nm technology to implement the two models. With reconfigurable design and event-driven processing feature the resulting application-specific integrated circuit (ASIC) occupies only 5mm2 silicon area and the average power consumption is 142 μW. The proposed solution achieves a significant reduction in both false alarm rates and power consumption when benchmarked against state-of-the-art counterparts.

Mots clés

Département: Département de génie électrique
Organismes subventionnaires: Pioneer R&D Program of Zhejiang, Leading Goose R&D Program of Zhejiang, STI2030-Major Project, Zhejiang Key R&D Program, Westlake University (Hangzhou, China)
Numéro de subvention: 2024C03002, 2022ZD0208805, 2021C03002
URL de PolyPublie: https://publications.polymtl.ca/65407/
Titre de la revue: Frontiers in Neuroscience (vol. 18)
Maison d'édition: Frontiers Media
DOI: 10.3389/fnins.2024.1340164
URL officielle: https://doi.org/10.3389/fnins.2024.1340164
Date du dépôt: 07 mai 2025 16:18
Dernière modification: 13 févr. 2026 02:03
Citer en APA 7: Yang, J., Zhao, S., Lin, S., Hou, Q., Wang, J., & Sawan, M. (2024). Precise and low-power closed-loop neuromodulation through algorithm-integrated circuit co-design. Frontiers in Neuroscience, 18, 13 pages. https://doi.org/10.3389/fnins.2024.1340164

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document