Mathieu Besançon, Miguel F. Anjos et Luce Brotcorne
Article de revue (2024)
Abstract
Bilevel optimization problems embed the optimality of a subproblem as a constraint of another optimization problem. We introduce the concept of near-optimality robustness for bilevel optimization, protecting the upper-level solution feasibility from limited deviations from the optimal solution at the lower level. General properties and necessary conditions for the existence of solutions are derived for near-optimal robust versions of general bilevel optimization problems. A duality-based solution method is defined when the lower level is convex, leveraging the methodology from the robust and bilevel literature. Numerical results assess the efficiency of exact and heuristic methods and the impact of valid inequalities on the solution time
Mots clés
| Matériel d'accompagnement: | |
|---|---|
| Département: | Département de mathématiques et de génie industriel |
| Centre de recherche: | GERAD - Groupe d'études et de recherche en analyse des décisions |
| URL de PolyPublie: | https://publications.polymtl.ca/65063/ |
| Titre de la revue: | Journal of Global Optimization (vol. 90, no 4) |
| Maison d'édition: | Springer Science+Business Media |
| DOI: | 10.1007/s10898-024-01422-z |
| URL officielle: | https://doi.org/10.1007/s10898-024-01422-z |
| Date du dépôt: | 09 mai 2025 09:38 |
| Dernière modification: | 07 janv. 2026 15:12 |
| Citer en APA 7: | Besançon, M., Anjos, M. F., & Brotcorne, L. (2024). Robust bilevel optimization for near-optimal lower-level solutions. Journal of Global Optimization, 90(4), 813-842. https://doi.org/10.1007/s10898-024-01422-z |
|---|---|
Statistiques
Dimensions
