Daniel Appelö, Thomas Hagstrom et Yann-Meing Law
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (632kB) |
Résumé
Energy-conserving Hermite methods for solving Maxwell’s equations in dielectric and dispersive media are described and analyzed. In three space dimensions, methods of order 2m to 2m + 2 require (m + 1)³ degrees-of-freedom per node for each field variable and can be explicitly marched in time with steps independent of m. We prove the stability for time steps limited only by domain-of-dependence requirements along with error estimates in a special semi-norm associated with the interpolation process. Numerical experiments are presented which demonstrate that Hermite methods of very high order enable the efficient simulation of the electromagnetic wave propagation over thousands of wavelengths.
Mots clés
| Département: | Département de mathématiques et de génie industriel |
|---|---|
| Organismes subventionnaires: | National Science Foundation |
| Numéro de subvention: | DMS-2012296, DMS-2309687, DMS-2210286 |
| URL de PolyPublie: | https://publications.polymtl.ca/63266/ |
| Titre de la revue: | Communications on Applied Mathematics and Computation (vol. 7) |
| Maison d'édition: | Springer Nature |
| DOI: | 10.1007/s42967-024-00469-9 |
| URL officielle: | https://doi.org/10.1007/s42967-024-00469-9 |
| Date du dépôt: | 04 mars 2025 11:55 |
| Dernière modification: | 17 oct. 2025 13:01 |
| Citer en APA 7: | Appelö, D., Hagstrom, T., & Law, Y.-M. (2025). Energy-conserving Hermite methods for Maxwell's equations. Communications on Applied Mathematics and Computation, 7, 1146-1173. https://doi.org/10.1007/s42967-024-00469-9 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
