Alexis Vieloszynski, Soumaya Cherkaoui, Ola Ahmad, Jean-Frédéric Laprade, Olivier Nahman-Lévesque, Abdallah Aaraba and Shengrui Wang
Paper (2024)
An external link is available for this itemDepartment: | Department of Computer Engineering and Software Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/62734/ |
Conference Title: | IEEE 10th World Forum on Internet of Things (WF-IoT 2024) |
Conference Location: | Ottawa, ON, Canada |
Conference Date(s): | 2024-11-10 - 2024-11-13 |
Publisher: | Institute of Electrical and Electronics Engineers |
DOI: | 10.1109/wf-iot62078.2024.10811384 |
Official URL: | https://doi.org/10.1109/wf-iot62078.2024.10811384 |
Date Deposited: | 14 Feb 2025 14:31 |
Last Modified: | 14 Feb 2025 14:31 |
Cite in APA 7: | Vieloszynski, A., Cherkaoui, S., Ahmad, O., Laprade, J.-F., Nahman-Lévesque, O., Aaraba, A., & Wang, S. (2024, November). LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [Paper]. IEEE 10th World Forum on Internet of Things (WF-IoT 2024), Ottawa, ON, Canada. https://doi.org/10.1109/wf-iot62078.2024.10811384 |
---|---|
Statistics
Dimensions