<  Retour au portail Polytechnique Montréal

Gas-aggregated core–shell ZrN@SiN nanoparticles with enhanced thermal stability for plasmonic applications at high temperatures

Mariia Protsak, Veronika Cervenkova, Daniil Nikitin, Suren Ali-Ogly, Zdeněk Krtouš, Kateryna Biliak, Pavel Pleskunov, Marco Tosca, Ronaldo Katuta, Hynek Biederman, Bill Baloukas, Ludvik Martinu, Lucia Bajtosova, Miroslav Cieslar, Milan Dopita et Andrei Choukourov

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (8MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (681kB)
Afficher le résumé
Cacher le résumé

Abstract

Group IV metal nitrides are often considered a viable replacement for gold in numerous plasmonic applications that require high temperatures. However, despite exhibiting a high melting point, these materials are prone to oxidation in an oxygen-rich environment, leading to an undesirable change or loss of the plasmonic response. This work developed an environmentally friendly method based on reactive magnetron sputtering of Zr for the synthesis of ZrN nanoparticles (NPs) with their in-flight coating by an rf-sputtered SiN shell. The resultant core–shell NPs are characterized by cubic morphology, with a 15 nm ZrN core enveloped by a 5–15 nm SiN shell. The ZrN@SiN NPs demonstrate localized surface plasmon resonance (LSPR), which can be adjusted from 580 to 850 nm by tuning the porosity and, consequently, the effective refractive index of SiN. The SiN shell attenuates the plasmonic sensitivity of ZrN NPs, but protects them from postdeposition oxidation in air, preserving LSPR at temperatures above 400°C. Thus, this research proposes a one-step synthesis of ZrN@SiN NPs with controllable optical properties, enhanced thermal stability, and promising features for plasmonic applications at high temperatures.

Mots clés

Département: Département de génie physique
Organismes subventionnaires: Czech Science Foundation, Charles University
Numéro de subvention: GACR 23−06925S, GAUK 372322
URL de PolyPublie: https://publications.polymtl.ca/62610/
Titre de la revue: ACS Applied Nano Materials (vol. 8, no 6)
Maison d'édition: American Chemical Society
DOI: 10.1021/acsanm.4c06843
URL officielle: https://doi.org/10.1021/acsanm.4c06843
Date du dépôt: 05 févr. 2025 11:33
Dernière modification: 05 déc. 2025 04:41
Citer en APA 7: Protsak, M., Cervenkova, V., Nikitin, D., Ali-Ogly, S., Krtouš, Z., Biliak, K., Pleskunov, P., Tosca, M., Katuta, R., Biederman, H., Baloukas, B., Martinu, L., Bajtosova, L., Cieslar, M., Dopita, M., & Choukourov, A. (2025). Gas-aggregated core–shell ZrN@SiN nanoparticles with enhanced thermal stability for plasmonic applications at high temperatures. ACS Applied Nano Materials, 8(6), 3092-3103. https://doi.org/10.1021/acsanm.4c06843

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document