<  Retour au portail Polytechnique Montréal

A hybrid recommendation system using association rule mining, i-ALS algorithm, and SVD++ approach: a case study of a B2B company

Thamer Saraei, Maha Ben Ali et Jean-Marc Frayret

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (1MB)
Afficher le résumé
Cacher le résumé

Abstract

In the field of recommendation systems, collaborative filtering is a widely used technique. It provides recommendations to active users based on the ratings provided by similar users. However, this method may reduce the accuracy of user preference predictions and lead to lower-quality recommendations in cases of high data sparsity. This issue is often observed in the Business-to-Business (B2B) context, where user-generated reviews are often sparse. To overcome this challenge, we present a novel hybrid approach that explores product taxonomies and association rule mining combined with an advanced method for initialization. Our approach first involves generating a new explicit taxonomy based solely on textual product descriptions and extending the user–product matrix using association rule mining results. Second, complementary items are added to the user–item matrix based on users’ purchasing behaviors, as emphasized by the extracted association rules. Finally, we use the implicit Alternating Least Squares (i-ALS) algorithm and initialize the latent factor matrices with values obtained through the singular value decomposition approach (BLS-SVD++). This hybrid approach is tested and compared with conventional approaches, considering a real-world case study of a distributor located in Quebec. The results obtained from feedback implicitly inferred from sales data demonstrated improved RS performance compared to conventional approaches.

Mots clés

Département: Département de mathématiques et de génie industriel
Organismes subventionnaires: Mitacs Canada
URL de PolyPublie: https://publications.polymtl.ca/61966/
Titre de la revue: Intelligent Systems with Applications (vol. 25)
Maison d'édition: Elsevier
DOI: 10.1016/j.iswa.2025.200477
URL officielle: https://doi.org/10.1016/j.iswa.2025.200477
Date du dépôt: 16 janv. 2025 14:22
Dernière modification: 22 nov. 2025 10:11
Citer en APA 7: Saraei, T., Ben Ali, M., & Frayret, J.-M. (2025). A hybrid recommendation system using association rule mining, i-ALS algorithm, and SVD++ approach: a case study of a B2B company. Intelligent Systems with Applications, 25, 200477 (10 pages). https://doi.org/10.1016/j.iswa.2025.200477

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document