<  Retour au portail Polytechnique Montréal

From density to geometry: instance segmentation for reverse engineering of optimized structures

Thomas Rochefort-Beaudoin, Aurelian Vadean, Sofiane Achiche et Niels Aage

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (17MB)
Afficher le résumé
Cacher le résumé

Abstract

This paper introduces You Only Look Once v8 for Topology Optimization (YOLOv8-TO), a novel approach for reverse engineering topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with computer-aided design tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.

Mots clés

Département: Département de génie mécanique
Organismes subventionnaires: NSERC / CRSNG, Calcul Québec, Digital Research Alliance of Canada (DRAC)
Numéro de subvention: 569251
URL de PolyPublie: https://publications.polymtl.ca/61960/
Titre de la revue: Engineering Applications of Artificial Intelligence (vol. 141)
Maison d'édition: Elsevier
DOI: 10.1016/j.engappai.2024.109732
URL officielle: https://doi.org/10.1016/j.engappai.2024.109732
Date du dépôt: 16 janv. 2025 14:22
Dernière modification: 23 oct. 2025 11:06
Citer en APA 7: Rochefort-Beaudoin, T., Vadean, A., Achiche, S., & Aage, N. (2025). From density to geometry: instance segmentation for reverse engineering of optimized structures. Engineering Applications of Artificial Intelligence, 141, 109732 (20 pages). https://doi.org/10.1016/j.engappai.2024.109732

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document