Thomas Rochefort-Beaudoin, Aurelian Vadean, Sofiane Achiche
et Niels Aage
Article de revue (2025)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (17MB) |
Abstract
This paper introduces You Only Look Once v8 for Topology Optimization (YOLOv8-TO), a novel approach for reverse engineering topology-optimized structures into interpretable geometric parameters using the YOLOv8 instance segmentation model. Density-based topology optimization methods require post-processing to convert the optimal density distribution into a parametric representation for design exploration and integration with computer-aided design tools. Traditional methods such as skeletonization struggle with complex geometries and require manual intervention. YOLOv8-TO addresses these challenges by training a custom YOLOv8 model to automatically detect and reconstruct structural components from binary density distributions. The model is trained on a diverse dataset of both optimized and random structures generated using the Moving Morphable Components method. A custom reconstruction loss function based on the dice coefficient of the predicted geometry is used to train the new regression head of the model via self-supervised learning. The method is evaluated on test sets generated from different topology optimization methods, including out-of-distribution samples, and compared against a skeletonization approach. Results show that YOLOv8-TO significantly outperforms skeletonization in reconstructing visually and structurally similar designs. The method showcases an average improvement of 13.84% in the Dice coefficient, with peak enhancements reaching 20.78%. The method demonstrates good generalization to complex geometries and fast inference times, making it suitable for integration into design workflows using regular workstations. Limitations include the sensitivity to non-max suppression thresholds. YOLOv8-TO represents a significant advancement in topology optimization post-processing, enabling efficient and accurate reverse engineering of optimized structures for design exploration and manufacturing.
Mots clés
| Département: | Département de génie mécanique |
|---|---|
| Organismes subventionnaires: | NSERC / CRSNG, Calcul Québec, Digital Research Alliance of Canada (DRAC) |
| Numéro de subvention: | 569251 |
| URL de PolyPublie: | https://publications.polymtl.ca/61960/ |
| Titre de la revue: | Engineering Applications of Artificial Intelligence (vol. 141) |
| Maison d'édition: | Elsevier |
| DOI: | 10.1016/j.engappai.2024.109732 |
| URL officielle: | https://doi.org/10.1016/j.engappai.2024.109732 |
| Date du dépôt: | 16 janv. 2025 14:22 |
| Dernière modification: | 23 oct. 2025 11:06 |
| Citer en APA 7: | Rochefort-Beaudoin, T., Vadean, A., Achiche, S., & Aage, N. (2025). From density to geometry: instance segmentation for reverse engineering of optimized structures. Engineering Applications of Artificial Intelligence, 141, 109732 (20 pages). https://doi.org/10.1016/j.engappai.2024.109732 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
