<  Retour au portail Polytechnique Montréal

The power of computational thermochemistry in high-temperature process design and optimization: Part 2 – Pyrometallurgical process modeling using FactFlow

Kyota Poëti, Juan-Ricardo Castillo-Sánchez, Ugo Matteo David Mahue, Vincent Rioux-Frenette, Zineb Squalli Houssaini, Kentaro Oishi et Jean-Philippe Harvey

Article de revue (2025)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (6MB)
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Matériel supplémentaire
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (545kB)
Afficher le résumé
Cacher le résumé

Abstract

Computational thermochemistry is an essential tool when it comes to the design of new industrial pyrometallurgical processes. It also enables the optimization of existing processes by analyzing the effect of various operating conditions on key indicators such as the metal recovery, the product composition, the direct emissions and the process overall energy balance. The modeling of these complex processes requires the use of multiple streams and equilibrium reactors in order to perform a large series of thermodynamic calculations. It also needs to account for the kinetic limitations of key chemical reactions. Current thermochemical software restricts users to single equilibrium reactor calculations or necessitates advanced programming knowledge to build customized pyrometallurgical processes. In this work, we introduce a new process simulation interface called FactFlow, a multi-stream/multi-unit process simulator embedded in the FactSage package. It offers an intuitive and efficient interface for handling streams, performing equilibrium calculations and allowing the use of stream recycling loops. It also uses the extensive thermodynamic databases available in FactSage to describe the energetics of oxides, sulfides, carbides, salts and metallic phases. This new process simulator interface enables the solving of mass and energy balances of a wide range of pyrometallurgical processes related to the primary production of iron and ferroalloys, copper, titanium and more. In this work, this new interface is used to describe four pyrometallurgical processes, i.e. (i) ferrosilicon alloy production using a submerged arc furnace, (ii) the primary production of copper and the impact of E-waste recycling using a Noranda-like process, (iii) the primary titanium production via the Kroll process, and (iv) the production of direct reduction iron ore pellets via the MIDREX process. Results of the simulations performed in this work are systematically compared to data available in the literature.

Mots clés

Département: Département de génie chimique
Centre de recherche: CRCT - Centre de recherche en calcul thermochimique
Organismes subventionnaires: NSERC / CRSNG
Numéro de subvention: RGPIN-2017-06168
URL de PolyPublie: https://publications.polymtl.ca/61933/
Titre de la revue: Calphad (vol. 88)
Maison d'édition: Elsevier
DOI: 10.1016/j.calphad.2024.102772
URL officielle: https://doi.org/10.1016/j.calphad.2024.102772
Date du dépôt: 16 janv. 2025 14:22
Dernière modification: 28 nov. 2025 23:46
Citer en APA 7: Poëti, K., Castillo-Sánchez, J.-R., Mahue, U. M. D., Rioux-Frenette, V., Squalli Houssaini, Z., Oishi, K., & Harvey, J.-P. (2025). The power of computational thermochemistry in high-temperature process design and optimization: Part 2 – Pyrometallurgical process modeling using FactFlow. Calphad, 88, 102772 (18 pages). https://doi.org/10.1016/j.calphad.2024.102772

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document