<  Retour au portail Polytechnique Montréal

Investigating of machine learning's capability in enhancing traffic simulation models

Bessem Dammak, Francesco Ciari, Ali Mohamed Jaoua et Hamed Naseri

Communication écrite (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND)
Télécharger (587kB)
Afficher le résumé
Cacher le résumé

Abstract

The development of agent-based modeling in traffic simulation allows for the modeling of traveler movement and decision making using predefined rules and variables. Nonetheless, the computational cost of agent-based modeling is high, and it takes a long time to generate new scenarios using these models. To address this, this study proposes a new approach to predict the results of new simulations using machine learning techniques. This paper focuses on the reproduction of the models that simulate variables reflecting traveler decision making, such as mode choice, travel distance and duration, and waiting time. A variety of data-driven techniques have been employed in this regard to model these features resulting from unanticipated activities in a dynamic environment. The proposed approach will be based on synthetic data generated from various simulation scenarios, that will be followed by a data preparation process. Therefore, the robustness of the built machine learning models was tested and assessed in different and new situations in order to evaluate their capability to reproduce the models responsible for generating the stated variables. Experiments show that the suggested solution has a high level of robustness, implying that it can replicate the final results of these models. Further, Extreme Gradient Boosting outperformed other machine learning techniques in terms of predicting simulation variables when comparing prediction accuracy and running time.

Mots clés

Sujet(s): 1000 Génie civil > 1000 Génie civil
1000 Génie civil > 1003 Génie du transport
Département: Département des génies civil, géologique et des mines
URL de PolyPublie: https://publications.polymtl.ca/61899/
Nom de la conférence: World Conference on Transport Research (WCTR 2023)
Lieu de la conférence: Montréal, Québec
Date(s) de la conférence: 2023-07-17 - 2023-07-21
Titre de la revue: Transportation Research Procedia (vol. 82)
Maison d'édition: Elsevier
DOI: 10.1016/j.trpro.2024.12.122
URL officielle: https://doi.org/10.1016/j.trpro.2024.12.122
Date du dépôt: 15 janv. 2025 16:11
Dernière modification: 16 févr. 2025 04:49
Citer en APA 7: Dammak, B., Ciari, F., Jaoua, A. M., & Naseri, H. (juillet 2023). Investigating of machine learning's capability in enhancing traffic simulation models [Communication écrite]. World Conference on Transport Research (WCTR 2023), Montréal, Québec. Publié dans Transportation Research Procedia, 82. https://doi.org/10.1016/j.trpro.2024.12.122

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Loading...

Provenance des téléchargements

Loading...

Dimensions

Actions réservées au personnel

Afficher document Afficher document