Bessem Dammak, Francesco Ciari, Ali Mohamed Jaoua et Hamed Naseri
Communication écrite (2023)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Utilisation non commerciale-Pas d'oeuvre dérivée (CC BY-NC-ND) Télécharger (587kB) |
Abstract
The development of agent-based modeling in traffic simulation allows for the modeling of traveler movement and decision making using predefined rules and variables. Nonetheless, the computational cost of agent-based modeling is high, and it takes a long time to generate new scenarios using these models. To address this, this study proposes a new approach to predict the results of new simulations using machine learning techniques. This paper focuses on the reproduction of the models that simulate variables reflecting traveler decision making, such as mode choice, travel distance and duration, and waiting time. A variety of data-driven techniques have been employed in this regard to model these features resulting from unanticipated activities in a dynamic environment. The proposed approach will be based on synthetic data generated from various simulation scenarios, that will be followed by a data preparation process. Therefore, the robustness of the built machine learning models was tested and assessed in different and new situations in order to evaluate their capability to reproduce the models responsible for generating the stated variables. Experiments show that the suggested solution has a high level of robustness, implying that it can replicate the final results of these models. Further, Extreme Gradient Boosting outperformed other machine learning techniques in terms of predicting simulation variables when comparing prediction accuracy and running time.
Mots clés
Sujet(s): |
1000 Génie civil > 1000 Génie civil 1000 Génie civil > 1003 Génie du transport |
---|---|
Département: | Département des génies civil, géologique et des mines |
URL de PolyPublie: | https://publications.polymtl.ca/61899/ |
Nom de la conférence: | World Conference on Transport Research (WCTR 2023) |
Lieu de la conférence: | Montréal, Québec |
Date(s) de la conférence: | 2023-07-17 - 2023-07-21 |
Titre de la revue: | Transportation Research Procedia (vol. 82) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.trpro.2024.12.122 |
URL officielle: | https://doi.org/10.1016/j.trpro.2024.12.122 |
Date du dépôt: | 15 janv. 2025 16:11 |
Dernière modification: | 16 févr. 2025 04:49 |
Citer en APA 7: | Dammak, B., Ciari, F., Jaoua, A. M., & Naseri, H. (juillet 2023). Investigating of machine learning's capability in enhancing traffic simulation models [Communication écrite]. World Conference on Transport Research (WCTR 2023), Montréal, Québec. Publié dans Transportation Research Procedia, 82. https://doi.org/10.1016/j.trpro.2024.12.122 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions