Quoc Thang Phan, Jean‐Michel Rabanel, Dikran Mekhjian, Justine Saber, Araceli Garcia-Ac, Zhang Hu, Victor Passos Gibson, Charlotte Zaouter, Pierre Hardy, Shunmoogum A. Patten, Daria Camilla Boffito et Xavier Banquy
Article de revue (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (13MB) |
Abstract
The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers—characterized by variations in backbone length, grafting density, and self-assembly morphology—offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a “grafting-from” strategy. Comprehensive characterization techniques, including nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and atomic force microscopy (AFM), employed to confirm the polymers’ structure. The BB polymers evaluated as carriers for molecules with differing hydrophobicity profiles, namely Rhodamine B and Paclitaxel. These nanocarriers systematically assessed for drug loading efficiency and penetration capabilities, compared to conventional polymeric micelles (PM) formed from linear amphiphilic polymers. BB-based nanocarriers exhibited superior cellular uptake in both 2D and 3D cell culture models when compared to PM. Furthermore, analysis of drug distribution and particle penetration highlighted the profound influence of polymer morphology on biological interactions. These findings underscore the potential of unimolecular carriers with precisely defined structures as promising drug delivery platforms for a wide range of biomedical applications.
Mots clés
bottlebrush polymer; drug delivery system; methacryloyloxyethyl phospho-rylcholine; poly (D,L-lactic acid); self-assembly
Sujet(s): |
1800 Génie chimique > 1800 Génie chimique 1900 Génie biomédical > 1900 Génie biomédical |
---|---|
Département: |
Département de génie chimique Institut de génie biomédical |
Organismes subventionnaires: | NSERC / CRSNG, Canada Research Chair program, CREATE training program, TransMedTech Institute |
URL de PolyPublie: | https://publications.polymtl.ca/61261/ |
Titre de la revue: | Small |
Maison d'édition: | John Wiley & sons Inc |
DOI: | 10.1002/smll.202408616 |
URL officielle: | https://doi.org/10.1002/smll.202408616 |
Date du dépôt: | 17 déc. 2024 12:22 |
Dernière modification: | 24 déc. 2024 08:21 |
Citer en APA 7: | Phan, Q. T., Rabanel, J.‐M., Mekhjian, D., Saber, J., Garcia-Ac, A., Hu, Z., Gibson, V. P., Zaouter, C., Hardy, P., Patten, S. A., Boffito, D. C., & Banquy, X. (2024). Core–shell bottlebrush polymers : unmatched delivery of small active compounds deep into tissues. Small, 2408616 (15 pages). https://doi.org/10.1002/smll.202408616 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année

Provenance des téléchargements

Dimensions