Andrie Harmaji, Mira Chandra Kirana et Reza Jafari
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (6MB) |
Abstract
The potential substitution of Portland cement–based concrete with low- and high-calcium fly ash–based geopolymers was investigated. However, predicting the workability and compressive strength of geopolymers with the desired physical and mechanical properties is a complicated process because of the variety of chemical compositions found in aluminosilicate sources. Therefore, machine-learning techniques were used to predict the physical and mechanical properties of the geopolymers and eliminate the usual trial-and-error laboratory procedures. The experimental and predicted results of geopolymer properties using the multilayer perceptron regressor, voting regressor, and XGBoost techniques were compared. The XGBoost model outperformed the other models in terms of accuracy for predicting workability and compressive strength, producing the R2 of 0.96 and 0.89, respectively. Sensitivity analysis determined that the percentage of CaO had the largest effect on geopolymer workability of 27.13%. Fly ash content had the largest effect on compressive strength of 34.44%. Our approach offers a straightforward and dependable strategy for designing and optimizing fly ash–based geopolymers.
Mots clés
geopolymer; fly ash; machine learning; workability; compressive strength
Sujet(s): |
1800 Génie chimique > 1800 Génie chimique 2700 Technologie de l'information > 2700 Technologie de l'information |
---|---|
Département: | Département de génie informatique et génie logiciel |
URL de PolyPublie: | https://publications.polymtl.ca/59444/ |
Titre de la revue: | Crystals (vol. 14, no 10) |
Maison d'édition: | Multidisciplinary Digital Publishing Institute |
DOI: | 10.3390/cryst14100830 |
URL officielle: | https://doi.org/10.3390/cryst14100830 |
Date du dépôt: | 30 oct. 2024 12:22 |
Dernière modification: | 31 oct. 2024 06:15 |
Citer en APA 7: | Harmaji, A., Kirana, M. C., & Jafari, R. (2024). Machine learning to predict workability and compressive strength of low- and high-calcium fly ash–based geopolymers. Crystals, 14(10), 830 (19 pages). https://doi.org/10.3390/cryst14100830 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions