<  Retour au portail Polytechnique Montréal

Machine learning to predict workability and compressive strength of low- and high-calcium fly ash–based geopolymers

Andrie Harmaji, Mira Chandra Kirana et Reza Jafari

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (6MB)
Afficher le résumé
Cacher le résumé

Abstract

The potential substitution of Portland cement–based concrete with low- and high-calcium fly ash–based geopolymers was investigated. However, predicting the workability and compressive strength of geopolymers with the desired physical and mechanical properties is a complicated process because of the variety of chemical compositions found in aluminosilicate sources. Therefore, machine-learning techniques were used to predict the physical and mechanical properties of the geopolymers and eliminate the usual trial-and-error laboratory procedures. The experimental and predicted results of geopolymer properties using the multilayer perceptron regressor, voting regressor, and XGBoost techniques were compared. The XGBoost model outperformed the other models in terms of accuracy for predicting workability and compressive strength, producing the R2 of 0.96 and 0.89, respectively. Sensitivity analysis determined that the percentage of CaO had the largest effect on geopolymer workability of 27.13%. Fly ash content had the largest effect on compressive strength of 34.44%. Our approach offers a straightforward and dependable strategy for designing and optimizing fly ash–based geopolymers.

Mots clés

geopolymer; fly ash; machine learning; workability; compressive strength

Sujet(s): 1800 Génie chimique > 1800 Génie chimique
2700 Technologie de l'information > 2700 Technologie de l'information
Département: Département de génie informatique et génie logiciel
URL de PolyPublie: https://publications.polymtl.ca/59444/
Titre de la revue: Crystals (vol. 14, no 10)
Maison d'édition: Multidisciplinary Digital Publishing Institute
DOI: 10.3390/cryst14100830
URL officielle: https://doi.org/10.3390/cryst14100830
Date du dépôt: 30 oct. 2024 12:22
Dernière modification: 31 oct. 2024 06:15
Citer en APA 7: Harmaji, A., Kirana, M. C., & Jafari, R. (2024). Machine learning to predict workability and compressive strength of low- and high-calcium fly ash–based geopolymers. Crystals, 14(10), 830 (19 pages). https://doi.org/10.3390/cryst14100830

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document