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Abstract: The potential substitution of Portland cement–based concrete with low- and high-calcium
fly ash–based geopolymers was investigated. However, predicting the workability and compressive
strength of geopolymers with the desired physical and mechanical properties is a complicated process
because of the variety of chemical compositions found in aluminosilicate sources. Therefore, machine-
learning techniques were used to predict the physical and mechanical properties of the geopolymers
and eliminate the usual trial-and-error laboratory procedures. The experimental and predicted results
of geopolymer properties using the multilayer perceptron regressor, voting regressor, and XGBoost
techniques were compared. The XGBoost model outperformed the other models in terms of accuracy
for predicting workability and compressive strength, producing the R2 of 0.96 and 0.89, respectively.
Sensitivity analysis determined that the percentage of CaO had the largest effect on geopolymer
workability of 27.13%. Fly ash content had the largest effect on compressive strength of 34.44%.
Our approach offers a straightforward and dependable strategy for designing and optimizing fly
ash–based geopolymers.

Keywords: geopolymer; fly ash; machine learning; workability; compressive strength

1. Introduction

Geopolymers have emerged as a sustainable alternative to cement because their
production requires lower power consumption and emits fewer greenhouse gases, and these
compounds have excellent mechanical and durability properties. Geopolymer systems can
reduce CO2 emissions by 50%–80% and energy demand by 60% compared with ordinary
Portland cement [1,2]. They are formed by the alkali activation of silica (Si) and alumina
(Al)-rich precursors with an alkaline activator. One of the most common raw materials
of geopolymers is fly ash [3], a solid waste by-product of coal-fired power plants, for
which electrical power plants look for cost-effective and environmentally friendly disposal
methods. The chemical composition of fly ash depends on the type of coal, which can
be divided into four basic types: anthracite, bituminous, subbituminous, and lignite.
Bituminous coal fly ash consists primarily of silica, alumina, iron oxide, and calcium, with
varying proportions of carbon [4]. Lignite and subbituminous coal fly ash have higher
calcium oxide concentrations, lower percentages of silica and iron oxide, and a lower carbon
content [5]. According to ASTM C618 [6], low- and high-calcium fly ash is categorized
as Class F and Class C, respectively. Low-calcium Class F fly ash contains less than 10%
CaO, whereas high-calcium Class C fly ash contains more than 15% CaO. This higher CaO
content produces self-cementing qualities [7], with the geopolymer gradually hardening
and becoming stronger over time in the presence of water.

The complexity of the chemical composition makes fly ash–based geopolymers an
interesting research topic. However, given the nature and diversity of available source mate-
rials, designing a geopolymer mixture that achieves the desired fresh properties, satisfactory
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strength characteristics, and proclaimed environmental benefits is a complex process. Its
design necessitates a meticulous selection of input material and mix proportions, generally
determined through experiments that require a significant amount of material, time, and
labor. Thus, it is critical to use soft computing techniques [8] and machine-learning mod-
els [9] to quickly and accurately predict the working properties of geopolymers. Machine
learning operates on a similar concept to traditional algorithms; they are more favorable for
managing nonlinear behavior than linear behavior [10]. Recent research applying machine
learning to geopolymers includes Amin et al. [11], who used decision trees (DT) and a
support vector machine (SVM) ensemble learner to predict the mechanical properties of fly
ash/slag–based geopolymer concrete. Their DT ensemble learner produced an R2 value of
0.93, a value that was better than in the other tested methods. Huang et al. [12] used gene
expression programming (GEP) and multi-expression programming (MEP) to predict the
compressive and split tensile strength of fly ash–based geopolymer. The GEP-based models
outperformed the MEP-based models for both compressive and split tensile strengths. Most
similar studies use machine learning to predict the compressive strength of a geopolymer,
but as far as the authors know, there has been no research on predicting a geopolymer’s
workability.

The purpose of this research is to apply individual and ensemble machine-learning
methods using the multilayer perceptron regressor, voting regressor, and XGBoost tech-
niques to predict the workability and compressive strength of geopolymers made using
low- and high-calcium fly ash. Then, sensitivity analysis was performed to determine
the impact of input parameters on the outcome. The results can then be used to design
sustainable geopolymers with the desired performance.

2. Materials and Methods
2.1. Materials

For this study, low- and high-calcium fly ash produced by power stations in Suralaya
(fly ash F) and West Sumbawa (fly ash C) in Indonesia, respectively, were used. Particle size
analysis (PSA) of the materials was performed using the Fritsch particle sizer (Figure 1),
and the chemical composition of both fly ashes was determined using X-ray fluorescence
(XRF) (Table 1).
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Figure 1. Distribution of particles for low-calcium (Class F) and high-calcium (Class C) fly ash.

X-ray diffraction (XRD) coupled with the XPowder Ver. 2004.04.70 Pro software served
to determine the mineral compositions of fly ash. Both fly ashes contained quartz and
mullite, and thaumasite appeared in the Class C fly ash (Figure 2). SEM was used to
identify the form of the fly ash particles (Figure 3). The Class F fly ash was mostly spherical
and contained larger particles than the Class C fly ash. Some of the latter particles had
imperfect spherical shapes.
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Table 1. The chemical compositions of low- (F) and high-calcium (C) fly ash measured by XRF.

Oxides Fly Ash F Fly Ash C

SiO2 52.30 40.18
Al2O3 26.57 17.32
Fe2O3 7.28 14.11
CaO 6.00 15.85

Na2O 1.41 0.93
SO3 0.70 0.80
K2O 0.73 1.48
MgO 2.13 6.89
LOI 1.18 0.86
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Sodium hydroxide (NaOH) crystals (98% purity) and a sodium silicate (Na2SiO3)
solution (15.98% Na2O, 37.23% SiO2, and 46.79% H2O) were obtained from the chemical
company Bratachem in Bandung, Indonesia. NaOH working solution was prepared by dis-
solving NaOH crystals in distilled water. It was then combined with Na2SiO3, thoroughly
stirred, and left to cool down for six hours before being mixed with the fly ash [13]. Natural
sand, as fine aggregate in the saturated-surface-dry (SSD) condition, was supplied from
a quarry in Cimalaka, Indonesia, for the production of the geopolymer mortar having an
absorption coefficient and fineness modulus of 2.88% and 2.75, respectively.
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2.2. Mix Design

The mix proportions for the prepared geopolymers are presented in Appendix A,
with variations in the amounts of fine aggregate (sand), fly ash, NaOH, Na2SiO3, and
added water, as well as various CaO, Na2O, and SiO2 contents, NaOH molarities, curing
temperatures, workabilities, and compressive strengths. These geopolymers were selected
for testing because the ratios of fly ash and aggregate and NaOH to Na2SiO3, as well as
curing temperature, were believed to affect the mechanical properties of geopolymers.
Geopolymer slurry was made by combining fly ash, alkali activator, and fine aggregate.
Afterward, it was poured into a 50 mm × 50 mm × 50 mm cubical mold.

2.3. Test Methods
2.3.1. Workability Test

A flow test table measurement was conducted in accordance with ASTM C-1437 [14].
This test aims to determine the workability of the sample based on the difference in diameter
of the fresh geopolymer. The slurry diameter was measured, then the flow test table was
tapped 25 times, and the diameter was remeasured after this tapping.

2.3.2. Compressive Strength Test

The compressive strength testing process followed ASTM C-39 [15] on geopolymer
samples aged 7 and 28 days. The testing was conducted using a universal testing machine
type RAT 100, which has a load capacity of up to 100 tons. Three specimens were produced
for each test, and the presented results were averages of the three.

2.3.3. Characterization Techniques

The chemical composition of the raw material was determined using XRF ADVANT XP
Thermo ARL9900 Fourier transform infrared spectroscopy (FTIR), run at 4000 to 400 cm−1

at a resolution of 2 cm−1 with an average of 32 scans. Measurements were made using a
Prestige 21 Shimadzu FTIR spectrometer. Morphological observations were carried out
using a Hitachi scanning electron microscope (SEM) SU3500 on a cross section of specimens.
X-ray diffraction served to determine the crystallinity and mineral phase of both the raw
material and geopolymer. XRD testing was conducted using a Philips Diffractometry PW
1710 XRD instrument. These materials characterization was conducted in Institut Teknologi
Bandung, Indonesia.

3. Machine-Learning Algorithms

This research relied on two types of machine-learning models—individual (MLP)
and ensemble (VR and XGB)—to evaluate and recommend the most effective model for
predicting the desired outcome. Of the 156 data points, 108 were used as training data, and
the remaining 48 served as testing data.

3.1. Multilayer Perceptron Regressor (MLP)

Multilayer perceptron (MLP) networks are feedforward neural networks. Multiple
layers of a perceptron are arranged in networks called multilayer perceptrons with thresh-
old activation. Vanilla neural networks consist of several perceptrons connected to a single
hidden layer. There are three node levels in an MLP: input, hidden, and output. All nodes
have a nonlinear activation function and are neurons with the exception of the input nodes.
One MLP-supervised learning technique is backpropagation. MLPs are more multilayered
than linear perceptrons and have nonlinear activation.

3.2. Voting Regressor (VR)

A voting ensemble is a machine-learning ensemble methodology that boosts system
performance by using multiple methods rather than a single model. By combining the
outcomes of several techniques, this method can solve problems through classification and
regression. The estimators of all models are averaged to obtain a final estimate for regression
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problems, for which the ensembles are known as voting regressors (VRs) [16]. Voting can
be performed by two means: weighted voting (WV) and average voting (AV). The weights
in the case of AV are equal to one. One drawback of AV is that it assumes that each model
in the ensemble is equally effective [17]. This assumption is improbable, especially when
using different machine-learning algorithms. WV assigns a weight coefficient to every
member of the ensemble. The weight can be either a floating-point number between 0 and 1,
such that the total equals 1, or an integer representing the number of votes granted to
the corresponding ensemble member, starting at 1. Alternatively, it can be an integer
representing the number of votes granted to the corresponding ensemble member, starting
at 1.

3.3. Extreme Gradient Boosting (XGB)

XGBoost is an ensemble-learning technique based on trees that makes use of the
boosting concept [18] and has been widely used because of its great accuracy in a variety of
fields [19]. This effective method, which is based on the gradient boosting algorithm (GDB),
combines weak models with additional training methods to increase prediction accuracy.
Gradient boosting expands the capabilities of the boosting algorithm by combining multiple
predictors from a set of weak learners, such as classification and regression trees (CART),
to create a new and powerful learner [20]. XGBoost is designed with a multiprocessing
OpenMP API, which can use all CPU cores in parallel during training, making it computa-
tionally efficient and scalable [21]. Furthermore, XGBoost sorts the independent variables
at the start of the training process to reduce training complexity and computational time.

4. Data Processing
4.1. Database Description

The database for the various geopolymer mixtures was obtained from experimental
work (presented in Appendix A), which involved 156 workability and compressive strength
results. The retrieved data were arranged in accordance with the Python coding require-
ments for each model. The properties of the geopolymers were determined by a variety
of factors, including heterogeneity between test methods, mix proportions, preparation
methods, and curing conditions. In this study, fly ash amount, CaO content, Na2O content,
SiO2 content, fine aggregate (sand) amount, NaOH molarity, NaOH amount, Na2SiO3
amount, added water amount, and curing temperature were used as input parameters
to assess the effect on the 28-day compressive strength. The attributes of fly ash, fine
aggregate, NaOH, Na2SiO3, and added water are expressed in grams, whereas the oxides
(CaO, Na2O, and SiO2) are displayed as a percentage (%). Finally, the curing temperature is
denoted in degrees Celsius (◦C). The summary of input variables and descriptive statistics,
including mean, median, mode, standard deviation, input ranges, and lower and upper
limits, are presented in Table 2.

Table 2. Descriptive statistics of the input variables.

Variable
Parameter Fly Ash (g) CaO (%) Na2O

(%) SiO2 (%) Fine
Aggregate (g)

NaOH
Molarity NaOH (g) Na2SiO3

(g)
Added

Water (g)
Curing

Temp. (◦C)

Mean 880.38 9.98 1.22 47.41 1321.25 11.62 183.30 257.56 24.59 75.78
Median 630 6.00 1.41 52.30 1134 12 157.5 210 0 80
Mode 1260 6.00 1.41 52.30 1890 12 315 315 0 80

Standard
deviation 367.71 4.88 0.24 6.00 570.53 3.19 87.68 112.23 35.18 14.75

Input range 300 9.85 0.48 12.12 1768 8 258.33 306.67 113.4 60
Lower limit 330 6.00 0.93 40.18 500 8 56.67 113.33 0 20
Upper limit 630 15.85 1.41 52.30 2268 16 315 420 113.4 80

The MLP, VR, and XGB algorithms were used to predict the required output. The
predicted compressive strength (C-S) result was then calculated as an R2 value. A higher R2

value indicates that the selected model produces better results with a higher precision [22,23].
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4.2. Evaluation Criteria

The performance of the resulting model was compared with existing models using the
statistical metrics of the correlation coefficient (R2), mean absolute error (MAE), and mean
square error (MSE). Statistical analysis served to evaluate the predictive ability of models
in co-occurrence with Equations (1)–(3):

R2 = 1 − ∑n
k=1

(
Yi − Ŷi

)2

∑n
k=1(Yi − µ)2 , (1)

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

, and (2)

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2, (3)

where Yi is the observed values, Ŷi is the predicted values, n is the number of data points,
and µ is the total number of data points.

5. Results and Discussion

This section covers the analysis of workability tests from the flow test table, compres-
sive strength, chemical and morphological characterization, and machine learning–related
prediction. Generally, a water-per-cement (w/c) ratio is used in Portland cement–based
concrete systems to correlate w/c with workability and compressive strength. However,
because of the complexity of the geopolymer raw material, adjustments were required.
The w/c was modified to the mole’s ratio of H2O/[Na2O + Al2O3 + SiO2] or H/NSA, as
recommended by an earlier study [24]. The moles of H2O were the sum of mol H2O in
Na2SiO3, NaOH flakes, NaOH solution, and added water. Additionally, the moles of Na2O
were the sum of Na2O moles in fly ash, Na2SiO3, and NaOH flakes. Furthermore, the moles
of SiO2 were the sum of mol Na2O in fly ash and Na2SiO3. Finally, the moles of Al2O3 were
obtained from the mol of Al2O3 in fly ash.

5.1. Workability Test

The workability of the geopolymer with different H/NSA ratio connections is dis-
played in Figure 4. Usually, adding more water to the geopolymer-based system will
increase the workability of the fresh concrete [25]. This was not the case for the geopoly-
mer mixtures in this study as low H/NSA (range 1–1.5) in the low-calcium fly ash–based
geopolymers had high workability, even at a H/NSA less than 2.

Several factors can affect the workability of geopolymers [26], e.g., the high CaO
content in the high-calcium fly ash can alter the workability of geopolymer slurries. Adding
extra water, therefore, triggers a dual reaction: (i) geopolymerization with the product of
sodium aluminum silicate hydrate (NASH) and (ii) hydration that results in calcium silicate
hydrate (CSH). These reactions explain why the workability of the high-calcium fly ash was
generally low, even at H/NSA values > 2. Thus, working with high-calcium fly ash–based
geopolymers is more difficult as they possess low workability and are more difficult to
cast into a mold. Moreover, there is a possibility of segregation that must be considered.
Flash setting can also occur because of the high calcium content of fly ash [27]. A previous
study [28] reported the effectiveness of borax in deterring flash setting time as a means of
prolonging the setting time. The particle size of fly ash can also affect the workability of
fresh geopolymers. Visually, the particle size of the Class C fly ash was relatively finer than
that of the Class F fly ash (Figure 3). Thus, the solubility of fly ash increased as particle size
decreased because finer particles can react with alkali activators quickly and produce the
aforementioned phenomenon of dual reaction.
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5.2. Compressive Strength

Figure 5 displays the relationship between geopolymer compressive strength and
H/NSA ratio. The strength difference mentioned above can be explained by the reaction
that occurred in low- and high-calcium fly ash–based geopolymers.
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Figure 5. The compressive strength (fc) of geopolymers varying in water/cement (H/NSA) ratio
after 24 h of oven curing followed by ambient curing until day 28.

Typically, the primary reaction product in geopolymers is NASH [28], which was the
case for our low-calcium fly ash–based geopolymer. This compound has a gel-like form
that enhances the mechanical properties and durability of the geopolymer [29]. However,
the presence of high calcium in the fly ash favors the possibility of carbonation, which may
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result from the alkaline geopolymer mixture coming into contact with atmospheric CO2 [30].
The process of carbonation in alkali-activated geopolymers is evidently dissimilar from
Portland cement–based cementitious material [31]. The pore solution in Portland cement
paste dissolves atmospheric CO2, which then quickly reacts with portlandite to form CaCO3
and with CSH to form both CaCO3 and silica gel [32]. Conversely, because of the absence
of portlandite in the geopolymer compound, the natural carbonation takes place directly to
form a calcium aluminosilicate hydrate gel (CASH), producing a strong decalcification and
residual siliceous gel that also contains alumina in addition to CaCO3 [33].

5.3. Characterization Techniques

The XRD, FTIR, and SEM analyses were conducted on geopolymers with the highest
compressive strength and low-calcium (79.96 MPa) and high-calcium (61.45 MPa) fly ash.
The following subsections present the diffractograms, spectra, and morphological behaviors
of the tested geopolymers.

5.3.1. XRD Analysis

Figures 6 and 7 present the respective diffractograms of Class F fly ash, Class C fly
ash, and their associated geopolymerization products. The chemical compositions were
analyzed using XPowder Ver. 2004.04.70 Pro software.
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Both fly ashes show the presence of quartz (Q) and mullite (M). These compounds
were also reported by Kozhukhova et al. [34]. The calcium-based mineral thaumasite (T)
was also present in the Class C fly ash. This result confirmed the high calcium content of
the material. However, peak intensity transformed from crystalline to semi-crystalline to
amorphous in the geopolymer. The product of both fly ashes contained a sodium silicate
hydrate (#) mineral, which confirmed that geopolymerization had occurred.
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5.3.2. FTIR Analysis

FTIR served to determine the chemical composition of the geopolymers having the
highest strengths of the low- and high-calcium fly ash. The respective spectra are presented
in Figures 8 and 9, and the data are summarized in Table 3.
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Table 3. Summary of the FTIR spectra of the geopolymers.

Raw
Material

Bending
Si–O–Si
O–Si–O
(cm−1)

Vibration
Si–O–Al
(cm−1)

Stretching
Si–O–Si
Si–O–Al
(cm−1)

Stretching
O–C–O
(cm−1)

Bending
H–O–H
(cm−1)

Stretching
–OH

(cm−1)

Class C fly ash 464.84 578.64
777.31

1010.70
1024.20 1429.50 1641.42 3448.72

Class F fly ash 462.92 578.64
777.31

1018.41
1080.14 – 1637.56 3448.72

Several similar chemical compositions were found in both samples. The stretching
OH and bending H–O–H vibrations of the bound water molecules were detected at around
3448 and 1640 cm−1, respectively [35,36]. A prominent peak at 1024–1200 cm−1 can be
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observed, which is ascribed to the stretching vibration of the aluminosilicate Si–O–Si and
Al–O–Si groups [37]. This absorption band also indicates the presence of a geopolymer
compound mineral [38]. The bands around 578–700 cm−1 are generated by a Si–O–Al
stretching vibration [39,40]. A Si–O–Si bending vibration at around 450 cm−1 is also
observed [41]. The only notable difference between the two spectra is the presence of an
asymmetric stretching O–C–O bond at 1429 cm−1 [42] in the geopolymer with high-calcium
fly ash. These spectra indicate the existence of sodium carbonate produced through the
interaction of excessive sodium and ambient CO2 [43]. The primary phases that could be
formed were anhydrous sodium carbonates (Na2CO3), natron (Na2CO3·10H2O), nahcolite
(NaHCO3), trona (Na3H(CO3)2·2H2O), and thermonatrite (Na2CO3·H2O) [44]. Alkalis from
the activators react with CO2 to form these compounds, and CO2 may also interact with the
aluminosilicate gel’s structure [45]. The alkali activator used in the geopolymer formulation
determines how much alkali is available to react with CO2. Additional soluble silicate from
the activator lowers the concentration of free alkalis [46]. This generates carbonation at a
slower rate than at which NaOH is formed, which may affect pore structure [47]. Therefore,
further investigation and empirical confirmation are necessary to determine the long-term
stability of these geopolymers, particularly in regard to their resistance to carbonation [48].

5.3.3. SEM Analysis

The morphology of geopolymer products with low- and high-calcium fly ash is rep-
resented in Figures 10 and 11, respectively. The images show the interfacial transition
zone (ITZ), which is a zone around the aggregate [49]. The ITZs experience microcrack
formation as a result of the strength variations between the ITZs and the paste and aggre-
gate [50]. The geopolymer with high-calcium fly ash displayed a wider crack distance than
the low-calcium fly ash–based geopolymer. Nevertheless, a previous study reported that
the geopolymer ITZ has more favorable mechanical properties and a stronger bond than
Portland cement–based cementitious material [51].
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5.4. Performance Evaluation of Various Models
5.4.1. Workability Prediction

Figure 12 presents the correlation between the actual workability results and the MLP,
VR, and XGB models’ predictions. Of these three models, the XGB model produced a
greater accuracy.
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Figure 12. Actual and predicted workability distribution determined by the multilayer perceptron
(MLP), voting regressors (VRs), and extreme gradient boosting (XGB) models.

Table 4 presents the statistical measures of predictions for the geopolymer compressive
strength from the various machine-learning methods. The MAE, MSE, and R2 values of the
MLP model were higher than those of the MLP and VR models. These values confirm the
high accuracy of the XGB model in predicting geopolymer workability.

Table 4. Statistics for the workability predictions of the machine-learning models.

Machine-Learning
Methods

MAE
(cm) MSE (cm) R2

MLP 1.87 4.81 0.78
VR 1.31 2.39 0.89

XGB 0.06 0.007 0.96

5.4.2. Compressive Strength Prediction

The correlation coefficients for the actual compressive strength versus the predictions
made by the MLP, VR, and XGB models (Figure 13) show that the results from the MLP
and VR are less accurate than those from the XGB model.

Table 5 presents the statistical measures for the geopolymer compressive strength
prediction from different machine-learning methods. The MAE, MSE, and R2 values for
the MLP model have a higher value than the MLP and VR models. Similar to worka-
bility prediction, the results illustrated the reliability of the XGB model in forecasting
geopolymer strength.
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Figure 13. Actual and predicted compressive strength distributions determined by the multilayer
perceptron (MLP), voting regressors (VRs), and extreme gradient boosting (XGB) models.

Table 5. Statistics for compressive strength prediction by machine learning.

Machine-Learning Methods MAE
(MPa) MSE (MPa) R2

MLP 7.20 87.37 0.54
VR 5.23 47.43 0.75

XGB 2.45 19.57 0.89

5.5. Feature Importance

The input parameters that affect geopolymer workability and compressive strength
predictions were determined. The desired outcome can be significantly affected by the num-
ber of input parameters [52,53]. Our approach reduces network complexity by making it eas-
ier to identify the most important input parameters and ignore the less important ones [54].
The sensitivity of the XGB-based prediction model was evaluated to look into the contri-
bution of different independent parameters to compressive strength. Equations (4) and (5)
were used to compute the variables’ participation in the models’ outcomes.

Ni = fmax(xi)− fmin(xi), and (4)

Si =
Ni

∑n
j−1 Nj

. (5)

Figures 14 and 15 illustrate how each parameter affects the workability and compres-
sive strength, respectively. Results from feature importance analysis are proportionate to
the input variables and total data set used in the model’s construction. Nevertheless, the
machine-learning algorithm recognizes the impact of each configuration.



Crystals 2024, 14, 830 13 of 19

Crystals 2024, 14, x FOR PEER REVIEW 14 of 21 
 

 

the input variables and total data set used in the model’s construction. Nevertheless, the 
machine-learning algorithm recognizes the impact of each configuration. 

 
Figure 14. Percentage contribution of the input variable to predicted workability. 

 
Figure 15. Percentage contribution of the input variables to predicted compressive strength. 

The results of the XGB sensitivity testing indicated that CaO percentage (27.13%), 
added water (14.59%), and fine aggregate (13.88%) affected workability predictions the 
most. The decrease in workability results from the mixture’s increased alkalinity brought 
on by CaO and the increased aluminosilicate dissolution during the geopolymerization 
process. This process is linked to the alkaline mixture’s lack of water [55]. Fly ash content 
had the most significant contribution (34.44%) to compressive strength, followed by 
added water (27.52%). These results concur with an earlier investigation [56] and demon-
strate how fly ash content is critical for predicting the compressive strength properties of 
geopolymers derived from fly ash. Furthermore, the sensitivity analysis of the prediction 
model demonstrated that the added water strongly influenced the compressive strength 
prediction. Adding water to the geopolymer concrete increases compressive strength but 
only to a point, after which additional water reduces compressive strength. 

The study aimed to show the benefit of individual and ensemble machine-learning 
algorithms for calculating the physical and mechanical properties of geopolymers. The 
MLP, VR, and XGB machine-learning algorithms were used to predict the workability and 
properties of geopolymers. The XGB model’s high accuracy has been previously reported 

Figure 14. Percentage contribution of the input variable to predicted workability.

Crystals 2024, 14, x FOR PEER REVIEW 14 of 21 
 

 

the input variables and total data set used in the model’s construction. Nevertheless, the 
machine-learning algorithm recognizes the impact of each configuration. 

 
Figure 14. Percentage contribution of the input variable to predicted workability. 

 
Figure 15. Percentage contribution of the input variables to predicted compressive strength. 

The results of the XGB sensitivity testing indicated that CaO percentage (27.13%), 
added water (14.59%), and fine aggregate (13.88%) affected workability predictions the 
most. The decrease in workability results from the mixture’s increased alkalinity brought 
on by CaO and the increased aluminosilicate dissolution during the geopolymerization 
process. This process is linked to the alkaline mixture’s lack of water [55]. Fly ash content 
had the most significant contribution (34.44%) to compressive strength, followed by 
added water (27.52%). These results concur with an earlier investigation [56] and demon-
strate how fly ash content is critical for predicting the compressive strength properties of 
geopolymers derived from fly ash. Furthermore, the sensitivity analysis of the prediction 
model demonstrated that the added water strongly influenced the compressive strength 
prediction. Adding water to the geopolymer concrete increases compressive strength but 
only to a point, after which additional water reduces compressive strength. 

The study aimed to show the benefit of individual and ensemble machine-learning 
algorithms for calculating the physical and mechanical properties of geopolymers. The 
MLP, VR, and XGB machine-learning algorithms were used to predict the workability and 
properties of geopolymers. The XGB model’s high accuracy has been previously reported 

Figure 15. Percentage contribution of the input variables to predicted compressive strength.

The results of the XGB sensitivity testing indicated that CaO percentage (27.13%),
added water (14.59%), and fine aggregate (13.88%) affected workability predictions the
most. The decrease in workability results from the mixture’s increased alkalinity brought
on by CaO and the increased aluminosilicate dissolution during the geopolymerization
process. This process is linked to the alkaline mixture’s lack of water [55]. Fly ash content
had the most significant contribution (34.44%) to compressive strength, followed by added
water (27.52%). These results concur with an earlier investigation [56] and demonstrate
how fly ash content is critical for predicting the compressive strength properties of geopoly-
mers derived from fly ash. Furthermore, the sensitivity analysis of the prediction model
demonstrated that the added water strongly influenced the compressive strength prediction.
Adding water to the geopolymer concrete increases compressive strength but only to a
point, after which additional water reduces compressive strength.

The study aimed to show the benefit of individual and ensemble machine-learning
algorithms for calculating the physical and mechanical properties of geopolymers. The
MLP, VR, and XGB machine-learning algorithms were used to predict the workability
and properties of geopolymers. The XGB model’s high accuracy has been previously
reported [57,58]. The minimum error values of MAE and MSE for this model further
supported this high accuracy. However, evaluating and recommending the best machine-
learning regressor for forecasting for a variety of fields is difficult because the model’s
accuracy is heavily influenced by its parameters and data set. Moreover, ensemble machine-
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learning algorithms frequently make use of the weak learner by creating submodels for
data training and optimizing for the highest R2 score. The machine-learning model run for
each prediction case may differ depending on the problem’s complexity, the prediction’s
purpose, and the data’s characteristics. For instance, [59] demonstrated that the gradient-
boosting machine-learning ensemble model achieved the highest accuracy (up to 99%)
over the SVC, random forest, and Adaboost models for predicting cardiac disease. The
XGBoost ensemble technique nonetheless makes it difficult to demonstrate its advantages,
e.g., in the context of stock price prediction, when the quantity of data is limited and the
correlation of a single factor is excessively high [60]. Consequently, the prediction results
indicate that the multiple linear regression (MLR) single model has the highest accuracy,
up to over 90% [61]. Therefore, using ensemble techniques or more intricate models could
be beneficial when dealing with large volumes of data or high data complexity, such as
imbalanced, fragmentary, or noisy data. In contrast, a simplified machine-learning model
can demonstrate greater accuracy when operating with less data, a relatively simple model,
or an imbalanced correlation.

Feature importance analysis served to investigate the effect of parameters on the pro-
jected workability and compressive strength of geopolymers. Our findings are significant
because fly ash is sourced from various locations and coal types that differ in their oxide
compounds. By using machine-learning techniques, predictions can be made of the desired
properties by determining input parameters. The model parameters and the data set in-
fluence the results of the selected models. Our approach can determine those parameters
(inputs) having the greatest influence on the predicted output. The associated Python code
can also be configured to evaluate or predict any output based on the input parameters.

6. Conclusions

The heterogeneity of fly ash is linked to the varying raw material and its chemical com-
position, which causes geopolymers to have nonuniform properties. Therefore, creating
the optimal geopolymer mix design can be costly and time-consuming. Machine-learning
methods can predict the optimal mix design, lowering the cost and time required for
geopolymer synthesis. This study used individual machine learning (MLP) and ensemble
machine learning (VR and XGB) to predict the workability and compressive strength of
fly ash–based geopolymers. The 156 data points from experimental investigations and
simulated workability and compressive strength using various models were analyzed.
The models were created and trained using ten input parameters. We performed sen-
sitivity analysis on the XGB model to determine the effect of various input features on
predictive outcomes. Although all three machine-learning approaches were able to predict
geopolymer workability and compressive strength, the XGB model was the most promising,
producing the highest R2 (0.96) and lowest MAE (0.06) and MSE (0.007) for workability, the
highest R2 (0.89), and the lowest MAE (2.45) and MSE (19.57) for compressive strength.

Sensitivity analysis for the XGB model confirmed that the predictions of workability
of the fly ash–based geopolymer were affected by the CaO percentage in fly ash (27.13%),
followed by added water (14.59%) and fine aggregate (13.88%). Fly ash content was the
most important factor in predicting compressive strength, with a sensitivity analysis score
of 34.44%, followed by added water (27.52%). This analysis highlights the importance of
considering a wide range of input parameters when predicting fly ash–based geopolymer
workability and compressive strength and carefully controlling these parameters through-
out the manufacturing process. Our results demonstrate that XGB can be used as a reliable
machine-learning approach to forecast geopolymer workability and compressive strength.
Our approach has practical advantages by reducing the need for extensive testing, lowering
labor and material requirements, and providing recommendations for optimizing concrete
mix ratios while considering environmental concerns.

Geopolymers can be made from a wide range of industrial by-products. Therefore,
future research should focus on prediction modeling that investigates a broader assortment
of input and output characteristics. Future geopolymer prediction studies should involve
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different raw materials, using comprehensive data sets to assess factors such as freeze–
thaw resistance, chloride resistance, sulfate attack, creep, and shrinkage. Furthermore,
experimental studies could be conducted to collect additional data and validate the models
under different curing conditions.
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Appendix A

Fly
Ash (g)

CaO
(%)

Na2O
(%)

SiO2
(%)

Fine
Aggregate (g) Molarity NaOH (g) WG (g) Added

Water (g)
Curing

Temp (◦C) fc (MPa) Workability
(cm)

1260 6.00 1.41 52.30 2268 12 315 315 0 80 62.67 13.50
1260 6.00 1.41 52.30 2268 12 315 315 0 80 62.63 13.50
1260 6.00 1.41 52.30 2268 12 315 315 0 80 62.71 13.50
1260 6.00 1.41 52.30 2268 8 210 420 0 80 54.50 14
1260 6.00 1.41 52.30 2268 8 210 420 0 80 54.48 14
1260 6.00 1.41 52.30 2268 8 210 420 0 80 54.52 14
1260 6.00 1.41 52.30 1890 16 210 420 0 80 80.00 14.50
1260 6.00 1.41 52.30 1890 16 210 420 0 80 79.96 14.50
1260 6.00 1.41 52.30 1890 16 210 420 0 80 80.04 14.50
1260 6.00 1.41 52.30 1890 8 315 315 0 80 59.98 16
1260 6.00 1.41 52.30 1890 8 315 315 0 80 59.96 16
1260 6.00 1.41 52.30 1890 8 315 315 0 80 60.00 16
1260 6.00 1.41 52.30 1890 8 210 420 0 80 53.03 16
1260 6.00 1.41 52.30 1890 8 210 420 0 80 53.02 16
1260 6.00 1.41 52.30 1890 8 210 420 0 80 53.04 16
1260 6.00 1.41 52.30 1512 12 210 420 0 80 61.80 16
1260 6.00 1.41 52.30 1512 12 210 420 0 80 61.76 16
1260 6.00 1.41 52.30 1512 12 210 420 0 80 61.84 16
1260 6.00 1.41 52.30 2268 12 210 420 37.8 80 64.70 16
1260 6.00 1.41 52.30 2268 12 210 420 37.8 80 64.69 16
1260 6.00 1.41 52.30 2268 12 210 420 37.8 80 64.71 16
1260 6.00 1.41 52.30 1890 12 210 420 37.8 80 64.80 16
1260 6.00 1.41 52.30 1890 12 210 420 37.8 80 64.76 16
1260 6.00 1.41 52.30 1890 12 210 420 37.8 80 64.84 16
1260 6.00 1.41 52.30 1890 8 210 420 37.8 80 52.10 17
1260 6.00 1.41 52.30 1890 8 210 420 37.8 80 52.08 17
1260 6.00 1.41 52.30 1890 8 210 420 37.8 80 52.12 17
1260 6.00 1.41 52.30 1890 12 315 315 0 80 73.60 17.50
1260 6.00 1.41 52.30 1890 12 315 315 0 80 73.62 17.50
1260 6.00 1.41 52.30 1890 12 315 315 0 80 73.64 17.50
1260 6.00 1.41 52.30 1890 16 315 315 37.8 80 66.05 18
1260 6.00 1.41 52.30 1890 16 315 315 37.8 80 66.04 18
1260 6.00 1.41 52.30 1890 16 315 315 37.8 80 66.06 18
1260 6.00 1.41 52.30 1890 16 210 420 75.6 80 57.20 18
1260 6.00 1.41 52.30 1890 16 210 420 75.6 80 57.24 18
1260 6.00 1.41 52.30 1890 16 210 420 75.6 80 57.16 18
1260 6.00 1.41 52.30 1890 12 315 315 37.8 80 63.25 18.50
1260 6.00 1.41 52.30 1890 12 315 315 37.8 80 63.30 18.50
1260 6.00 1.41 52.30 1890 12 315 315 37.8 80 63.20 18.50
1260 6.00 1.41 52.30 1890 12 210 420 75.6 80 52.70 18.50
1260 6.00 1.41 52.30 1890 12 210 420 75.6 80 52.80 18.50
1260 6.00 1.41 52.30 1890 12 210 420 75.6 80 52.60 18.50
1260 6.00 1.41 52.30 1890 16 315 315 0 80 63.40 18.50
1260 6.00 1.41 52.30 1890 16 315 315 0 80 63.60 18.50
1260 6.00 1.41 52.30 1890 16 315 315 0 80 63.20 18.50
1260 6.00 1.41 52.30 1890 8 315 315 37.8 80 44.00 19
1260 6.00 1.41 52.30 1890 8 315 315 37.8 80 44.04 19
1260 6.00 1.41 52.30 1890 8 315 315 37.8 80 43.96 19
1260 6.00 1.41 52.30 1512 12 315 315 0 80 63.20 20.50
1260 6.00 1.41 52.30 1512 12 315 315 0 80 63.18 20.50
1260 6.00 1.41 52.30 1512 12 315 315 0 80 63.22 20.50
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Fly
Ash (g)

CaO
(%)

Na2O
(%)

SiO2
(%)

Fine
Aggregate (g) Molarity NaOH (g) WG (g) Added

Water (g)
Curing

Temp (◦C) fc (MPa) Workability
(cm)

1260 6.00 1.41 52.30 1512 8 315 315 0 80 55.75 21
1260 6.00 1.41 52.30 1512 8 315 315 0 80 55.90 21
1260 6.00 1.41 52.30 1512 8 315 315 0 80 55.60 21
1260 6.00 1.41 52.30 1890 8 210 420 113.4 80 46.87 21.50
1260 6.00 1.41 52.30 1890 8 210 420 113.4 80 46.86 21.50
1260 6.00 1.41 52.30 1890 8 210 420 113.4 80 46.88 21.50
1260 6.00 1.41 52.30 1890 12 210 420 113.4 80 55.66 22
1260 6.00 1.41 52.30 1890 12 210 420 113.4 80 55.60 22
1260 6.00 1.41 52.30 1890 12 210 420 113.4 80 55.72 22
1260 6.00 1.41 52.30 1890 8 315 315 75.6 80 42.20 22.50
1260 6.00 1.41 52.30 1890 8 315 315 75.6 80 42.10 22.50
1260 6.00 1.41 52.30 1890 8 315 315 75.6 80 42.30 22.50
1260 6.00 1.41 52.30 1890 16 315 315 75.6 80 52.47 22.50
1260 6.00 1.41 52.30 1890 16 315 315 75.6 80 52.48 22.50
1260 6.00 1.41 52.30 1890 16 315 315 75.6 80 52.46 22.50
1260 6.00 1.41 52.30 1890 8 210 420 75.6 80 47.98 23
1260 6.00 1.41 52.30 1890 8 210 420 75.6 80 48.00 23
1260 6.00 1.41 52.30 1890 8 210 420 75.6 80 47.96 23
1260 6.00 1.41 52.30 1890 8 315 315 126 80 33.90 24.50
1260 6.00 1.41 52.30 1890 8 315 315 126 80 33.80 24.50
1260 6.00 1.41 52.30 1890 8 315 315 126 80 34.00 24.50
330 6.00 1.41 52.30 500 8 56.67 113.33 0 25 25.00 24
330 6.00 1.41 52.30 500 8 56.67 113.33 0 25 25.10 24
330 6.00 1.41 52.30 500 8 56.67 113.33 0 25 24.90 24
330 6.00 1.41 52.30 500 12 56.67 113.33 0 25 38.00 21
330 6.00 1.41 52.30 500 12 56.67 113.33 0 25 38.04 21
330 6.00 1.41 52.30 500 12 56.67 113.33 0 25 37.96 21
330 6.00 1.41 52.30 500 16 56.67 113.33 0 25 32.00 16
330 6.00 1.41 52.30 500 16 56.67 113.33 0 25 31.98 16
330 6.00 1.41 52.30 500 16 56.67 113.33 0 25 32.02 16
330 6.00 1.41 52.30 500 8 56.67 113.33 0 80 26.00 24
330 6.00 1.41 52.30 500 8 56.67 113.33 0 80 26.01 24
330 6.00 1.41 52.30 500 8 56.67 113.33 0 80 25.99 24
330 6.00 1.41 52.30 500 12 56.67 113.33 0 80 52.00 21
330 6.00 1.41 52.30 500 12 56.67 113.33 0 80 52.02 21
330 6.00 1.41 52.30 500 12 56.67 113.33 0 80 51.98 21
330 6.00 1.41 52.30 500 16 56.67 113.33 0 80 45.00 16
330 6.00 1.41 52.30 500 16 56.67 113.33 0 80 45.20 16
330 6.00 1.41 52.30 500 16 56.67 113.33 0 80 44.80 16
330 6.00 1.41 52.30 500 12 56.67 113.33 0 10 45.00 24
330 6.00 1.41 52.30 500 12 56.67 113.33 0 10 45.10 24
330 6.00 1.41 52.30 500 12 56.67 113.33 0 10 44.90 24
630 15.85 0.93 40.18 945 16 105 210 0 80 41.97 10
630 15.85 0.93 40.18 945 16 105 210 0 80 41.96 10
630 15.85 0.93 40.18 945 16 105 210 0 80 41.98 10
630 15.85 0.93 40.18 756 12 105 210 0 80 41.17 9
630 15.85 0.93 40.18 756 12 105 210 0 80 41.16 9
630 15.85 0.93 40.18 756 12 105 210 0 80 41.18 9
630 15.85 0.93 40.18 1134 8 105 210 0 80 36.72 10
630 15.85 0.93 40.18 1134 8 105 210 0 80 36.72 10
630 15.85 0.93 40.18 1134 8 105 210 0 80 36.72 10
630 15.85 0.93 40.18 945 12 157.5 157.5 0 80 25.90 10
630 15.85 0.93 40.18 945 12 157.5 157.5 0 80 25.80 10
630 15.85 0.93 40.18 945 12 157.5 157.5 0 80 26.00 10
630 15.85 0.93 40.18 1134 12 157.5 157.5 0 80 32.32 10
630 15.85 0.93 40.18 1134 12 157.5 157.5 0 80 32.36 10
630 15.85 0.93 40.18 1134 12 157.5 157.5 0 80 32.28 10
630 15.85 0.93 40.18 756 8 157.5 157.5 0 80 44.73 10
630 15.85 0.93 40.18 756 8 157.5 157.5 0 80 44.72 10
630 15.85 0.93 40.18 756 8 157.5 157.5 0 80 44.74 10
630 15.85 0.93 40.18 945 16 157.5 157.5 0 80 42.40 10
630 15.85 0.93 40.18 945 16 157.5 157.5 0 80 42.36 10
630 15.85 0.93 40.18 945 16 157.5 157.5 0 80 42.44 10
630 15.85 0.93 40.18 945 12 157.5 157.5 18.9 80 46.20 10
630 15.85 0.93 40.18 945 12 157.5 157.5 18.9 80 46.10 10
630 15.85 0.93 40.18 945 12 157.5 157.5 18.9 80 46.30 10
630 15.85 0.93 40.18 945 8 157.5 157.5 18.9 80 61.45 10
630 15.85 0.93 40.18 945 8 157.5 157.5 18.9 80 61.46 10
630 15.85 0.93 40.18 945 8 157.5 157.5 18.9 80 61.44 10
630 15.85 0.93 40.18 945 16 157.5 157.5 37.8 80 21.72 10
630 15.85 0.93 40.18 945 16 157.5 157.5 37.8 80 21.76 10
630 15.85 0.93 40.18 945 16 157.5 157.5 37.8 80 21.68 10
630 15.85 0.93 40.18 945 8 157.5 157.5 37.8 80 30.51 12
630 15.85 0.93 40.18 945 8 157.5 157.5 37.8 80 30.50 12
630 15.85 0.93 40.18 945 8 157.5 157.5 37.8 80 30.52 12
630 15.85 0.93 40.18 945 8 157.5 157.5 63 80 44.67 10.50
630 15.85 0.93 40.18 945 8 157.5 157.5 63 80 44.68 10.50
630 15.85 0.93 40.18 945 8 157.5 157.5 63 80 44.66 10.50
630 15.85 0.93 40.18 945 16 157.5 157.5 18.9 80 35.72 11.50
630 15.85 0.93 40.18 945 16 157.5 157.5 18.9 80 35.76 11.50
630 15.85 0.93 40.18 945 16 157.5 157.5 18.9 80 35.68 11.50
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Fly
Ash (g)

CaO
(%)

Na2O
(%)

SiO2
(%)

Fine
Aggregate (g) Molarity NaOH (g) WG (g) Added

Water (g)
Curing

Temp (◦C) fc (MPa) Workability
(cm)

630 15.85 0.93 40.18 945 8 105 210 0 80 50.33 12
630 15.85 0.93 40.18 945 8 105 210 0 80 50.32 12
630 15.85 0.93 40.18 945 8 105 210 0 80 50.34 12
630 15.85 0.93 40.18 945 12 105 210 0 80 47.50 11
630 15.85 0.93 40.18 945 12 105 210 0 80 47.52 11
630 15.85 0.93 40.18 945 12 105 210 0 80 47.48 11
630 15.85 0.93 40.18 945 12 157.5 157.5 63 80 53.90 13
630 15.85 0.93 40.18 945 12 157.5 157.5 63 80 53.80 13
630 15.85 0.93 40.18 945 12 157.5 157.5 63 80 54.00 13
630 15.85 0.93 40.18 945 16 157.5 157.5 63 80 30.38 12
630 15.85 0.93 40.18 945 16 157.5 157.5 63 80 30.36 12
630 15.85 0.93 40.18 945 16 157.5 157.5 63 80 30.40 12
630 15.85 0.93 40.18 756 8 105 210 0 80 32.12 13.50
630 15.85 0.93 40.18 756 8 105 210 0 80 32.08 13.50
630 15.85 0.93 40.18 756 8 105 210 0 80 32.16 13.50
630 15.85 0.93 40.18 756 16 105 210 0 80 33.15 13.50
630 15.85 0.93 40.18 756 16 105 210 0 80 33.16 13.50
630 15.85 0.93 40.18 756 16 105 210 0 80 33.14 13.50
630 15.85 0.93 40.18 1134 12 105 210 0 80 42.15 15
630 15.85 0.93 40.18 1134 12 105 210 0 80 42.10 15
630 15.85 0.93 40.18 1134 12 105 210 0 80 42.20 15
630 15.85 0.93 40.18 1134 16 105 210 0 80 41.73 13
630 15.85 0.93 40.18 1134 16 105 210 0 80 41.74 13
630 15.85 0.93 40.18 1134 16 105 210 0 80 41.72 13
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53. Ahmad, A.; Ostrowski, K.A.; Maślak, M.; Farooq, F.; Mehmood, I.; Nafees, A. Comparative study of supervised machine learning
algorithms for predicting the compressive strength of concrete at high temperature. Materials 2021, 14, 4222. [CrossRef]

54. Naderpour, H.; Rafiean, A.H.; Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial
neural networks. J. Build. Eng. 2018, 16, 213–219. [CrossRef]

55. Rashad, A.M.; Gharieb, M. Solving the perpetual problem of imperative use heat curing for fly ash geopolymer cement by using
sugar beet waste. Constr. Build. Mater. 2021, 307, 124902. [CrossRef]

56. Ahmad, A.; Ahmad, W.; Chaiyasarn, K.; Ostrowski, K.A.; Aslam, F.; Zajdel, P.; Joyklad, P. Prediction of Geopolymer Concrete
Compressive Strength Using Novel Machine Learning Algorithms. Polymers 2021, 13, 3389. [CrossRef]

57. Safhi, A.e.M.; Dabiri, H.; Soliman, A.; Khayat, K.H. Prediction of self-consolidating concrete properties using XGBoost machine
learning algorithm: Part 1—Workability. Constr. Build. Mater. 2023, 408, 133560. [CrossRef]

58. Ahmed, A.; Song, W.; Zhang, Y.; Haque, M.A.; Liu, X. Hybrid BO-XGBoost and BO-RF Models for the Strength Prediction of
Self-Compacting Mortars with Parametric Analysis. Materials 2023, 16, 4366. [CrossRef] [PubMed]

59. Kumar, K.J.; Thanka, M.R.; Edwin, E.B.; Ebenezer, V.; Joy, P. Multi-Model Supervised Machine Learning Techniques for Heart
Stroke Prediction. In Proceedings of the 2024 International Conference on Expert Clouds and Applications (ICOECA), Bengaluru,
India, 18–19 April 2024; pp. 661–665.

60. Deng, S.; Huang, X.; Zhu, Y.; Su, Z.; Fu, Z.; Shimada, T. Stock index direction forecasting using an explainable eXtreme Gradient
Boosting and investor sentiments. N. Am. J. Econ. Financ. 2023, 64, 101848. [CrossRef]

61. Shao, G. Stock price prediction based on multifactorial linear models and machine learning approaches. In Proceedings of the 2022
IEEE Conference on Telecommunications, Optics and Computer Science (TOCS), Dalian, China, 11–12 December 2022; pp. 319–324.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/gels8020105
https://doi.org/10.1016/j.cemconres.2021.106392
https://doi.org/10.1038/s41598-021-81514-y
https://doi.org/10.3390/ma14154222
https://doi.org/10.1016/j.jobe.2018.01.007
https://doi.org/10.1016/j.conbuildmat.2021.124902
https://doi.org/10.3390/polym13193389
https://doi.org/10.1016/j.conbuildmat.2023.133560
https://doi.org/10.3390/ma16124366
https://www.ncbi.nlm.nih.gov/pubmed/37374550
https://doi.org/10.1016/j.najef.2022.101848

	Introduction 
	Materials and Methods 
	Materials 
	Mix Design 
	Test Methods 
	Workability Test 
	Compressive Strength Test 
	Characterization Techniques 


	Machine-Learning Algorithms 
	Multilayer Perceptron Regressor (MLP) 
	Voting Regressor (VR) 
	Extreme Gradient Boosting (XGB) 

	Data Processing 
	Database Description 
	Evaluation Criteria 

	Results and Discussion 
	Workability Test 
	Compressive Strength 
	Characterization Techniques 
	XRD Analysis 
	FTIR Analysis 
	SEM Analysis 

	Performance Evaluation of Various Models 
	Workability Prediction 
	Compressive Strength Prediction 

	Feature Importance 

	Conclusions 
	Appendix A
	References

