Gabrielle Jayme, Ju-Ling Liu, José Héctor Gálvez, Sarah Julia Reiling, Sukriye Celikkol-Aydin, Arnaud N’Guessan, Sally Lee, Shu-Huang Chen, Alexandra Tsitouras, Fernando Sánchez-Quete, Thomas Maere, Eyerusalem Goitom, Mounia Hachad, Élisabeth Mercier, Stephanie K. Loeb, Peter A. Vanrolleghem, Sarah Dorner, Robert Delatolla, B. Jesse Shapiro, Dominic Frigon, Jiannis Ragoussis et Terrance P. Snutch
Article de revue (2024)
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (810kB) |
Abstract
During the COVID-19 pandemic, the monitoring of SARS-CoV-2 RNA in wastewater was used to track the evolution and emergence of variant lineages and gauge infection levels in the community, informing appropriate public health responses without relying solely on clinical testing. As more sublineages were discovered, it increased the difficulty in identifying distinct variants in a mixed population sample, particularly those without a known lineage. Here, we compare the sequencing technology from Illumina and from Oxford Nanopore Technologies, in order to determine their efficacy at detecting variants of differing abundance, using 248 wastewater samples from various Quebec and Ontario cities. Our study used two analytical approaches to identify the main variants in the samples: the presence of signature and marker mutations and the co-occurrence of signature mutations within the same amplicon. We observed that each sequencing method detected certain variants at different frequencies as each method preferentially detects mutations of distinct variants. Illumina sequencing detected more mutations with a predominant lineage that is in low abundance across the population or unknown for that time period, while Nanopore sequencing had a higher detection rate of mutations that are predominantly found in the high abundance B.1.1.7 (Alpha) lineage as well as a higher sequencing rate of co-occurring mutations in the same amplicon. We present a workflow that integrates short-read and long-read sequencing to improve the detection of SARS-CoV-2 variant lineages in mixed population samples, such as wastewater.
Mots clés
| Département: | Département des génies civil, géologique et des mines |
|---|---|
| Organismes subventionnaires: | Coronavirus Variants Rapid Response Network, Fond de la Recherche du Québec - Nature et Technologie, Trottier Family Foundation, Molson Foundation, Canada Foundation of Innovation |
| Numéro de subvention: | CFI-MSI 35444, CFI 33406, FRN# 175622, #41012 |
| URL de PolyPublie: | https://publications.polymtl.ca/59442/ |
| Titre de la revue: | Viruses (vol. 16, no 9) |
| Maison d'édition: | Multidisciplinary Digital Publishing Institute |
| DOI: | 10.3390/v16091495 |
| URL officielle: | https://doi.org/10.3390/v16091495 |
| Date du dépôt: | 13 nov. 2024 14:48 |
| Dernière modification: | 08 avr. 2025 17:33 |
| Citer en APA 7: | Jayme, G., Liu, J.-L., Gálvez, J. H., Reiling, S. J., Celikkol-Aydin, S., N’Guessan, A., Lee, S., Chen, S.-H., Tsitouras, A., Sánchez-Quete, F., Maere, T., Goitom, E., Hachad, M., Mercier, É., Loeb, S. K., Vanrolleghem, P. A., Dorner, S., Delatolla, R., Shapiro, B. J., ... Snutch, T. P. (2024). Combining Short- and Long-Read Sequencing Technologies to Identify SARS-CoV-2 Variants in Wastewater. Viruses, 16(9), 1495 (15 pages). https://doi.org/10.3390/v16091495 |
|---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions
