<  Retour au portail Polytechnique Montréal

NLP in SMEs for industry 4.0: opportunities and challenges

Mathieu Bourdin, Thomas Paviot, Robert Pellerin et Samir Lamouri

Communication écrite (2023)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (599kB)
Afficher le résumé
Cacher le résumé

Abstract

Natural Language Processing is the field of Computer Science that focuses on analyzing and processing natural language, mainly human text or speech. Recent trends in Natural Language Processing have led to the development of Large Language Models (LLMs): huge models trained on high amounts of data that achieve unprecedented performances in many tasks, such as answering questions, summarizing texts, or coding. These new tools have a wide range of applications and are being developed by many companies. However, Small and Medium Enterprises (SMEs) struggle to implement these new technologies, mainly because of the lack of resources. This paper aims to show the opportunities and challenges related to NLP-based solutions in SMEs based on a literature review. The main result is that NLP-based solutions have a wide range of applications in various companies, including SMEs, and may lead to many changes. However, there are still many obstacles to developing these tools in SMEs: SMEs lack specialized know-how to develop these solutions and do not often have standardized data. Moreover, there exists nearly no support for SMEs in the scientific literature to develop these tools.

Mots clés

Natural Language Processing; Industry 4.0; Machine Learning; Large Language Models; SMEs

Renseignements supplémentaires: co-located with 2023 International Conference on Project Management (ProjMAN 2023) and 2023 International Conference on Health and Social Care Information Systems and Technologies (HCist 2023)
Sujet(s): 1600 Génie industriel > 1600 Génie industriel
Département: Département de mathématiques et de génie industriel
Centre de recherche: CIRRELT - Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport
URL de PolyPublie: https://publications.polymtl.ca/59030/
Nom de la conférence: 2023 International Conference on Enterprise Information Systems (CENTERIS 2023)
Lieu de la conférence: Porto, Portugal
Date(s) de la conférence: 2023-11-10 - 2023-11-08
Titre de la revue: Procedia Computer Science (vol. 239)
Maison d'édition: Elsevier
DOI: 10.1016/j.procs.2024.06.186
URL officielle: https://doi.org/10.1016/j.procs.2024.06.186
Date du dépôt: 22 août 2024 10:31
Dernière modification: 02 oct. 2024 11:30
Citer en APA 7: Bourdin, M., Paviot, T., Pellerin, R., & Lamouri, S. (novembre 2023). NLP in SMEs for industry 4.0: opportunities and challenges [Communication écrite]. 2023 International Conference on Enterprise Information Systems (CENTERIS 2023), Porto, Portugal. Publié dans Procedia Computer Science, 239. https://doi.org/10.1016/j.procs.2024.06.186

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document