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human text or speech. Recent trends in Natural Language Processing have led to the development of Large Language Models 
(LLMs): huge models trained on high amounts of data that achieve unprecedented performances in many tasks, such as answering 
questions, summarizing texts, or coding. These new tools have a wide range of applications and are being developed by many 
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1. Introduction 

Language Models (LM) are statistical models that can understand and generate human language based on statistical 
patterns. They can for example create text and analyze the sentiments expressed in texts [21]. These models are a 
fundamental component of Natural Language Processing (NLP), the branch of artificial intelligence that focuses on 
the interaction between computers and human language. 

Language Models have recently attracted much attention in the media with the release of ChatGPT in November 
2022 [40]. Since then, many other NLP models have emerged: Google’s Bard, Meta’s LLaMA, and OpenAI’s GPT-4 
are a few examples. These models and the related algorithms perform great on a wide variety of tasks: they can give 
human-like answers to various questions, provide creative ideas, or execute concrete tasks such as coding [24] or 
summarising documents [46]. 

The models’ performance strongly depends on their size: the bigger the model, the fewer mistakes the model does. 
Language models have therefore increased their sizes from billions of parameters a few years ago to hundreds of 
trillions of parameters today [47]. With this increase in the models’ sizes, these models, now called Large Language 
Models (LLM), have reached an unprecedented level of performance in NLP. 

However, this improvement has a cost: a huge model implies a lot of computational resources to train the model 
and a high development cost. To try and reduce the costs, companies have developed Foundation Models: models that 
are trained on a vast amount of data and can be later adapted to different tasks. But even Foundation Models remain 
too expensive for many companies.  

With the recent works made to reduce the sizes of LLMs [50] and the development of open-source language models 
[48], these models will likely become financially affordable to all companies in the near future, and even for Small 
and Medium Enterprises (SMEs). Other obstacles to developing these innovations in SMEs include small companies' 
lack of know-how and unstandardized data [49].  

This paper aims to give an overview of the opportunities and challenges related to adopting NLP-based algorithms 
in SMEs based on a literature review. To this end, two questions will be answered:  

1) In which domains will NLP have the most significant potential impact in the future? And 
2) What obstacles deter the adoption of these tools in SMEs? 

The structure of this paper is the following: section 2 draws up an overview of the different NLP use cases in 
companies of all sizes based on recent scientific literature. Section 3 then deals with why SMEs still struggle to adopt 
these new tools and the potential solutions to the encountered obstacles. Detailed research methodologies are presented 
at the beginning of each section. 

2. NLP Use Cases for Industry 4.0 

2.1. Methodology 

The following list is a non-exhaustive list based on research made with the keywords "NLP", "LLM", and 
"Foundation Models" in Science Direct. After filtering review articles from 2019 and later in Science Direct, 47 results 
remained, then reduced to 33 after analyzing titles and abstracts. The same research was made on Google Scholar with 
results from 2019 and later to complete this listdone.  For each keyword, the first two pages were analyzed and 
deepened if needed. The total 93 articles found have then been sorted out and grouped by similar activity areas, which 
are presented in section 2.2. Systematic reviews have been removed since they are not use cases.  Duplicate papers 
have also been removed.  

This section aims to give an overview of the different applications of NLP algorithms in companies of all sizes. 
This list is not exhaustive but aims to show the wide range of applications of NLP solutions. 

2.2. NLP use cases 

2.2.1. Healthcare 
Healthcare is one of the most documented domains for using NLP: 21 of the 33 use cases found in ScienceDirect 

were related to healthcare. NLP algorithms can indeed help in both physical and mental Healthcare. They can: 
• Assist diagnosis-making [1];  
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• Detect pathologies that were unidentified in patients’ medical reports [2];  
• Inform patients on potential illnesses or treatment [3]; 
• Assist with image analysis (for example, radiology) [4]; 
• Detect mental illnesses [5] or loneliness [6] through texts or conversations; and 
• Provide 24/7 medical support for individuals [7].  

2.2.2. Training 
Language Models can also be useful in the domain of training, where retrieving information and understanding 

complex concepts are keys. They can:  
• Answer students’ questions thanks to chatbots [8];  
• Provide personalized teaching to each student [9]; 
• Explain by generating analogies [10]; 
• Generate questions for students’ assessment [11]; 
• Evaluate students’ work, including essays [12]; and 
• Help with grammar correction, including foreign languages [13]. 

2.2.3. Legal 
The use of NLP algorithms in the legal domain is a vast topic. The adoption in this field is high due to the significant 

number of documents and consequent time required when looking for information. LM is used in legal to: 
• Look for previous similar cases [14]; 
• Predict judgment results for a case [15]; 
• Answer legal questions [16]; 
• Summarize information on legal documents [17]; 
• Detect unfair clauses [18]; and 
• Detect crimes on social media [19]. 

2.2.4. Finance 
Finance is another economy’s key domain. Thanks to the high amount of available data in this field (companies’ 

financial reports or public posts on social media), NLP algorithms can be used in finance to: 
• Detect fraud in companies’ annual reports [20]; 
• Predict stock return based on social media posts [21]; 
• Extract risk sentences from companies’ reports [22]; and 
• Assess companies’ ESG based on media coverage [23]. 

2.2.5. Robotics and computer science 
In Computer Science, LM can be used to generate code from human instruction [24], to complete the missing part 

of a code [25], to test software [26], or even to generate comments [27]. It is also possible to control robots with human 
language or pictures [28]. Robots can “see” thanks to NLP [29] and detect emotions [30]. Eventually, NLP is even 
used to design other robots [31]. 

2.2.6. Business Process Management (BPM) 
In Business Process Management, LM can be used to retrieve information and classify documents [32], to detect 

whether a maintenance issue will block production [33], to recommend activities [34], to schedule tasks [35], or to 
help developing new products [36]. 

2.2.7. Energy 
Eventually, NLP can be used in the domain of energy production, for example, to answer specific questions on the 

nuclear domain [37] or to classify research articles related to this domain [38]. There are also examples of optimizing 
energy storage systems associated with renewable energies [39]. 
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2.2.8. Other use cases and general discussion 
NLP use cases are vast. To give a few other examples of situations where NLP can be used, one can mention: 

entertainment (creation of fictional stories [40]), journalism (detection of fake news [41]), translation [42], marketing 
(analyzing trends [43]), construction (accident analyzing in a construction site [44]) or transports (acquire data from 
different sources for traffic management [45]). Table 1 summarises the different application areas of NLP use cases. 

NLP-based solutions have many advantages compared to the human workforce, depending on the use case: they 
are faster, can deal with higher amounts of data, and are available 24/7. However, they also have drawbacks: mainly 
the lack of  

in the outputs but also the need to acquire many data to train the models. The advantages and drawbacks in each 
use case are summarised in Table 1.  

 

3. Obstacles to future development in SMEs 

Even though NLP applications are numerous, SMEs still struggle to implement them. This section aims to 
understand why and to give some solutions to the encountered issue. 

The methodology applied in this section is similar to the one in the previous section. A first literature review has 
been made in ScienceDirect with the same keywords as precedent ("NLP", "LLM", and "Foundation Models"), but 
the keyword “SME” was added (and its variant orthographs). The research only gave 4 results, none of which were 
relevant to this study. This first observation is a finding in itself: very few documents about using NLP in SMEs. 

The same keywords have been searched in Google Scholar to complete this research. The first 5 pages of results 
have been analyzed and filtered for each keyword based on titles and abstracts. This allowed us to find nine relevant 
articles dealing, which are summarised in this section. This shows that despite the many applications presented in 
Section 2, there is still very little research on implementing NLP solutions in SMEs. Results are grouped by 
encountered issues. 

3.1. Financial obstacles 

As mentioned in the introduction, state-of-the-art performances in NLP are obtained with Large Language Models 
(LLMs). These models require a lot of computational resources for both the training and inference phases. 

Table 1. Summary of NLP use cases (non-exhaustive) 

Area Useful NLP function 
Comparison with human workforce 

Potential impact 
Advantage Drawback 

Healthcare 
Provide information 

Analyse text and image 
Mimic human behaviour 

Available 24/7 
Remote access 

Cheaper 

Higher risk of 
error 

Provide universal 
access to medical 

support 

Training 
Provide information 
Analyse text (essays) 

Create content (questions, tests) 

Available 24/7 
Remote access 

Higher risk of 
error 

Provide universal 
access to 
education 

Legal Provide information Faster Higher risk of 
error 

Provide universal 
access to legal 

information 

Finance Analyse text (financial reports, media) 
Analyse sentiment 

Faster 
Can handle high amounts of 

data 
- - 

Robotics and 
computer science 

Generate code 
Analysing data from multiple sources 

Analyze image and sentiment 
Faster Higher risk of 

error 
Lead to the 
creation of 

autonomous robots 

Business Process 
Management Analysing data from multiple sources Can handle high amounts of 

data Require many data 
Assist decisions 
makers in their 
everyday life 

Energy Provide information 
Mathematical reasoning 

Available 24/7 

Faster 
Higher risk of 

error 
Reduce energy 
consumption 
worldwide 
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Training is the first phase of developing an LLM: the model uses a high amount of data to adjust its parameters 
and learn from the text, which includes deep relations between words. This training is costly. For example, the 
BLOOM model, a 176B-parameter model, required 3,5 months of training on 384 NVIDIA A100 80GB GPUs [51]. 
Each NVIDIA A100 costs around $10k, which means a hardware cost of at least $3M for the training of BLOOM, 
which is out of the range of most SMEs.  

Two solutions can be envisaged to face this:  
1) The use of cloud computing; and  
2) The use of open-source models. 
Cloud computing is a solution to reduce the development cost of LLM in SMEs.  Instead of acquiring the hardware 

required to train a model, an SME can rent it and use it only for the time required to train itneeded [52]. This solution 
is not ideal because even if it is less expensive than acquiring the hardware, it still represents a significant cost for the 
company. Moreover, there is a security risk with the data being transferred to an external company. 

An alternative to this solution is the use of open-source models. Some effective open-source models have recently 
been released, such as LLaMA, Alpaca, GPT4All, or BLOOM. Even if some of these are restricted to research 
purposes, others, such as BLOOM [51], are open to all, even SMEs. These recent open-source models allow to develop 
their own NLP-based algorithm on standard hardware such as a single computer. 

3.2. Human-related obstacles 

In [49], Bauer indicates that SMEs usually do not have dedicated employees for data science because of their size. 
This lack of knowledge is the main challenge to adopting Machine Learning (ML) in SMEs. Even though NLP and 
Machine Learning are different, one can assume that the obstacles that deter SMEs from adopting ML are the same 
as those that prevent them from adopting NLP. The lack of know-how in SMEs would therefore be an obstacle to 
developing NLP in SMEs. 

Still in [49], Bauer gives three solutions to this issue: 1°) to exchange with other companies that are already more 
mature on these topics 2°) to resort to external companies (consultants or service providers), or 3°) to cooperate with 
universities or research faculties. 

3.3. Data-related obstacles 

3.3.1. Model’s output 
 
Even though NLP has significantly improved over the past years, it still suffers from the issue of inconsistent 

outputs. This is a significant obstacle to the use of NLP in decision-making. Even the best state-of-the-art algorithms 
sometimes provide wrong or inexact information. This issue, called hallucination [53], makes NLP hard to use in 
many tasks, such as predicting the result of a legal judgment. Hopefully, exact outputs are not required in all tasks, 
for example, when creating a fictional story or speech [40], or in tasks where mistakes have few consequences, such 
as assisting humans in retrieving information [14]. However, this lack of consistency in NLP methods is one of the 
highest obstacles to their use in SMEs. 

One solution to this issue is to systematically cite the references used to give an answer. This solution was 
developed, for example, by OpenAI in their WebGPT [54]. When answering a question, WebGPT not only answers 
but also always cites the different sources used to provide the answer. This allows the user to check the answer before 
using it and therefore lightens the drawback of giving inaccurate answers. 

3.3.2. Outdated data 
 

Another drawback of NLP-based solutions is their time-limited knowledge. Indeed, language models are initially 
trained on a given data set but then stop learning as long as they are used; the model does not acquire any new 
information. This is a major obstacle for many SMEs that need updated information. 

One of the solutions that can be envisaged is the previously mentioned WebGPT [54]. This model cites its sources 
and retrieves information directly on the Web. This shows the feasibility of connecting a Language Model to the Web. 
No solution has been found in the literature for other kinds of updates (for example, information unavailable on the 
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BLOOM model, a 176B-parameter model, required 3,5 months of training on 384 NVIDIA A100 80GB GPUs [51]. 
Each NVIDIA A100 costs around $10k, which means a hardware cost of at least $3M for the training of BLOOM, 
which is out of the range of most SMEs.  

Two solutions can be envisaged to face this:  
1) The use of cloud computing; and  
2) The use of open-source models. 
Cloud computing is a solution to reduce the development cost of LLM in SMEs.  Instead of acquiring the hardware 

required to train a model, an SME can rent it and use it only for the time required to train itneeded [52]. This solution 
is not ideal because even if it is less expensive than acquiring the hardware, it still represents a significant cost for the 
company. Moreover, there is a security risk with the data being transferred to an external company. 

An alternative to this solution is the use of open-source models. Some effective open-source models have recently 
been released, such as LLaMA, Alpaca, GPT4All, or BLOOM. Even if some of these are restricted to research 
purposes, others, such as BLOOM [51], are open to all, even SMEs. These recent open-source models allow to develop 
their own NLP-based algorithm on standard hardware such as a single computer. 

3.2. Human-related obstacles 

In [49], Bauer indicates that SMEs usually do not have dedicated employees for data science because of their size. 
This lack of knowledge is the main challenge to adopting Machine Learning (ML) in SMEs. Even though NLP and 
Machine Learning are different, one can assume that the obstacles that deter SMEs from adopting ML are the same 
as those that prevent them from adopting NLP. The lack of know-how in SMEs would therefore be an obstacle to 
developing NLP in SMEs. 

Still in [49], Bauer gives three solutions to this issue: 1°) to exchange with other companies that are already more 
mature on these topics 2°) to resort to external companies (consultants or service providers), or 3°) to cooperate with 
universities or research faculties. 

3.3. Data-related obstacles 

3.3.1. Model’s output 
 
Even though NLP has significantly improved over the past years, it still suffers from the issue of inconsistent 

outputs. This is a significant obstacle to the use of NLP in decision-making. Even the best state-of-the-art algorithms 
sometimes provide wrong or inexact information. This issue, called hallucination [53], makes NLP hard to use in 
many tasks, such as predicting the result of a legal judgment. Hopefully, exact outputs are not required in all tasks, 
for example, when creating a fictional story or speech [40], or in tasks where mistakes have few consequences, such 
as assisting humans in retrieving information [14]. However, this lack of consistency in NLP methods is one of the 
highest obstacles to their use in SMEs. 

One solution to this issue is to systematically cite the references used to give an answer. This solution was 
developed, for example, by OpenAI in their WebGPT [54]. When answering a question, WebGPT not only answers 
but also always cites the different sources used to provide the answer. This allows the user to check the answer before 
using it and therefore lightens the drawback of giving inaccurate answers. 

3.3.2. Outdated data 
 

Another drawback of NLP-based solutions is their time-limited knowledge. Indeed, language models are initially 
trained on a given data set but then stop learning as long as they are used; the model does not acquire any new 
information. This is a major obstacle for many SMEs that need updated information. 

One of the solutions that can be envisaged is the previously mentioned WebGPT [54]. This model cites its sources 
and retrieves information directly on the Web. This shows the feasibility of connecting a Language Model to the Web. 
No solution has been found in the literature for other kinds of updates (for example, information unavailable on the 
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Internet). 

3.3.3. Non-standardised data  
 
One big difference between SMEs and large companies is their generally lower maturity in data management [49]. 

SMEs have usually fewer data or unstandardized data. This is an issue when building a language model, requiring 
much standardized data. A few solutions exist. 

3.3.3.1. Adapting the model to the unstandardized data 
 
A first approach to this issue would be to adapt the model to several data sources. Some works have already been 

made to this end, such as ToolFormer [57], a model that can retrieve information from different data sources by itself 
(for example, a question-and-answer database, a search engine, or a calendar). This work suggests that future NLP 
models could be taught to call by themselves different SME databases, such as their Enterprise Resource Planning 
(ERP), potential SQL databases, user’s mailboxes, or any other company’s tool. However, these solutions are still at 
an early stage of development and have not been proven effective yet on so many different applications. 

3.3.3.2. Adapting the data to the model 
 
Since adopting the model to various data sources seems complicated, an easier approach to the data issue could be 

to standardize the data. 
Unfortunately, no support has been found in the literature to help in this direction, that seems easier than training 

a model to access different databases. The data gathering and preparing processes are very little documented. The 
authors of some papers explain how they did themselves to prepare their models [1][55][56]. Still, there is no general 
methodology in the literature to help with the topic of data preparation: how to collect data? How much data are 
required? In which format? How to update them? What pre-treatment has to be applied? Etc. 

This lack of methodological framework in the literature is a major obstacle preventing SMEs from developing 
their own NLP-based solutions. This highlights the need for a methodological framework to help SMEs with data 
collection and preparation. 

4. Conclusion 

This paper gave an overview of the different fields where NLP is currently being developed and could become a 
major asset in the future for SMEs: healthcare, training, legal, finance, robotics, and more. Even if the potential of 
NLP is high, as shown by the numerous different use cases, SMEs still struggle to adopt these technologies. The main 
obstacles to this are SMEs’ lack of know-how and support to help them implement these technologies. 

The use of free, open-source language models and the collaboration with other entities such as universities can 
help SMEs in the development of these new technologies, which are faster than humans and can handle higher amounts 
of data. However, these tools still lack of exactness and are therefore not commonly used in decision-making. To face 
this issue, it is important for SMEs to keep updated and standardized data to train or update their models. Moreover, 
the model itself should be small enough to run on low-cost hardware and should be able to cite its data sources to 
mitigate the lack of precision. 

As a future work, a valuable contribution to support SMEs would be creating a theoretical framework to help 
developing language tools, particularly to indicate how how to identify, collect, prepare, and maintain the data the 
data. This would be a major addition to the scientific knowledge and greatly assist SMEs. 
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