Meryem Akoulih, Smail Tigani, Fouzia Byoud, Meryem El Rharib, Rachid Saadane, Samuel Pierre, Abdelah Chehri and Sanae El Ghachtouli
Paper (2023)
Open Acess document at official publisher |
Department: | Department of Computer Engineering and Software Engineering |
---|---|
PolyPublie URL: | https://publications.polymtl.ca/58885/ |
Conference Title: | 2023 International Symposium on Green Technologies and Applications (ISGTA 2023) |
Conference Location: | Casablanca, Morocco |
Conference Date(s): | 2023-12-27 - 2023-12-29 |
Journal Title: | Procedia Computer Science (vol. 236) |
Publisher: | Elsevier |
DOI: | 10.1016/j.procs.2024.05.003 |
Official URL: | https://doi.org/10.1016/j.procs.2024.05.003 |
Date Deposited: | 29 Jul 2024 13:39 |
Last Modified: | 29 Jul 2024 13:40 |
Cite in APA 7: | Akoulih, M., Tigani, S., Byoud, F., Rharib, M. E., Saadane, R., Pierre, S., Chehri, A., & Ghachtouli, S. E. (2023, December). Electrocoagulation-based AZO DYE (P4R) Removal Rate Prediction Model using Deep Learning [Paper]. 2023 International Symposium on Green Technologies and Applications (ISGTA 2023), Casablanca, Morocco. Published in Procedia Computer Science, 236. https://doi.org/10.1016/j.procs.2024.05.003 |
---|---|
Statistics
Dimensions