<  Retour au portail Polytechnique Montréal

Multi-physics DONJON5 reactor models for improved fuel cycle simulation with CLASS

Gabriel Billiet, Xavier Doligez, Guy Marleau, Marc Ernoult, Alain Hébert et Nicolas Thiollière

Article de revue (2024)

Document en libre accès dans PolyPublie et chez l'éditeur officiel
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution (CC BY)
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

This work investigates reactor model biases and their consequences in nuclear scenario simulations. Usually, the models for Pressurized Water Reactors are based on infinite 2D assembly depletion simulations, but recent work has shown the importance of 3D complete core simulation for uncertainty reduction. The consideration of a whole core leads to new reactor parameters in the simulations that may bring additional biases. The fuel temperature distribution is one of them, and previous work considered isothermal reactors, leading to probable uncertainties in spent fuel inventory at reactor discharge. To quantify those biases and their propagation in a full scenario simulation, new advanced reactor models have been developed, based on neutronics and thermal-hydraulics couplings at the core level performed with DONJON5. Results show that the plutonium isotopic quality of spent fuel is biased for an isothermal core, with values systematically higher than for multi-physics calculations. In order to propagate those discrepancies in fuel cycle simulations that involve plutonium recycling in PWR MOX fuels, the coupling between CLASS and DONJON was renewed in order to add new fuel parameters such as the fuel temperature in the core burn-up simulation. A new methodology for data interpolation from lattice calculation has been implemented that allows acceptable computational time for DONJON5 calculations that are done within the fuel cycle simulation performed by CLASS. Comparison between isothermal and multi-physics reactor models for advanced scenario simulations performed with CLASS shows that the isothermal hypothesis leads to biases up to 10% for plutonium inventory in the UOX spent fuel stockpile, comparable with biases associated with other reactor parameters such as the loading pattern.

Département: Département de génie mécanique
Département de génie physique
Centre de recherche: Autre
Organismes subventionnaires: NSERC / CRSNG, NEEDS French program
URL de PolyPublie: https://publications.polymtl.ca/58614/
Titre de la revue: EPJ Nuclear Sciences & Technologies (vol. 13, no 5)
Maison d'édition: EDP Sciences
DOI: 10.1051/epjn/2024008
URL officielle: https://doi.org/10.1051/epjn/2024008
Date du dépôt: 26 juin 2024 12:51
Dernière modification: 08 avr. 2025 10:04
Citer en APA 7: Billiet, G., Doligez, X., Marleau, G., Ernoult, M., Hébert, A., & Thiollière, N. (2024). Multi-physics DONJON5 reactor models for improved fuel cycle simulation with CLASS. EPJ Nuclear Sciences & Technologies, 13(5), 2024008 (13 pages). https://doi.org/10.1051/epjn/2024008

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document