<  Retour au portail Polytechnique Montréal

Categorization of precipitation for predicting combined sewer overflows. Application to the City of Montréal

Jonathan Jalbert, Claudie Ratté-Fortin, Jean‐Baptiste Burnet et Émilie Papillon

Article de revue (2024)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version officielle de l'éditeur
Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND)
Télécharger (988kB)
Afficher le résumé
Cacher le résumé

Abstract

Combined sewer systems are widespread in America and Europe. They often face limitations in transport or treatment capacity, especially during heavy rain events or thaw periods, resulting in combined sewer overflows (CSOs). Predictive modeling for CSOs is essential in a risk management context, and some studies have presented methods to categorize precipitations based on their potential to generate overflows. However, the precipitation classification is usually based on a few characteristics, and its predictive power is limited. The objective of this study is to present a simple yet powerful method to categorize precipitation for predicting CSO occurrences. A prediction model, based on an optimized classification tree, is proposed to predict CSO occurrences as a function of publicly accessible precipitation data. We fit the model on 9 overflow outlets in Montréal city from 2013 to 2019 and use this model to predict CSOs in 2020. The results showed a very good predictive power of overflows, with a prediction rate of 89%, a sensitivity rate of 83%, and a specificity rate of 91%. The method is also more accurate than the 5-category classification currently used by the City of Montréal. The proposed method could be easily applied to another region where CSO data are available, providing a simple and rigorous method for predicting CSOs across urban drainage networks containing many overflow outlets.

Mots clés

combined sewer overflow; CSO; precipitation; rainfall; decision tree

Sujet(s): 1000 Génie civil > 1000 Génie civil
1000 Génie civil > 1006 Génie hydrologique
2950 Mathématiques appliquées > 2950 Mathématiques appliquées
Département: Département de mathématiques et de génie industriel
Département des génies civil, géologique et des mines
Organismes subventionnaires: NSERC / CRSNG, IVADO
Numéro de subvention: RGPIN-2018-04481, PRF-2019-3295824760
URL de PolyPublie: https://publications.polymtl.ca/58568/
Titre de la revue: Journal of Hydrology (vol. 637)
Maison d'édition: Elsevier
DOI: 10.1016/j.jhydrol.2024.131333
URL officielle: https://doi.org/10.1016/j.jhydrol.2024.131333
Date du dépôt: 06 juin 2024 14:40
Dernière modification: 27 sept. 2024 04:18
Citer en APA 7: Jalbert, J., Ratté-Fortin, C., Burnet, J.‐B., & Papillon, É. (2024). Categorization of precipitation for predicting combined sewer overflows. Application to the City of Montréal. Journal of Hydrology, 637, 131333 (7 pages). https://doi.org/10.1016/j.jhydrol.2024.131333

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document