Jonathan Jalbert, Claudie Ratté-Fortin, Jean‐Baptiste Burnet et Émilie Papillon
Article de revue (2024)
Document en libre accès dans PolyPublie |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution-Pas d'utilisation commerciale-Pas de modification (CC BY-NC-ND) Télécharger (988kB) |
Abstract
Combined sewer systems are widespread in America and Europe. They often face limitations in transport or treatment capacity, especially during heavy rain events or thaw periods, resulting in combined sewer overflows (CSOs). Predictive modeling for CSOs is essential in a risk management context, and some studies have presented methods to categorize precipitations based on their potential to generate overflows. However, the precipitation classification is usually based on a few characteristics, and its predictive power is limited. The objective of this study is to present a simple yet powerful method to categorize precipitation for predicting CSO occurrences. A prediction model, based on an optimized classification tree, is proposed to predict CSO occurrences as a function of publicly accessible precipitation data. We fit the model on 9 overflow outlets in Montréal city from 2013 to 2019 and use this model to predict CSOs in 2020. The results showed a very good predictive power of overflows, with a prediction rate of 89%, a sensitivity rate of 83%, and a specificity rate of 91%. The method is also more accurate than the 5-category classification currently used by the City of Montréal. The proposed method could be easily applied to another region where CSO data are available, providing a simple and rigorous method for predicting CSOs across urban drainage networks containing many overflow outlets.
Mots clés
combined sewer overflow; CSO; precipitation; rainfall; decision tree
Sujet(s): |
1000 Génie civil > 1000 Génie civil 1000 Génie civil > 1006 Génie hydrologique 2950 Mathématiques appliquées > 2950 Mathématiques appliquées |
---|---|
Département: |
Département de mathématiques et de génie industriel Département des génies civil, géologique et des mines |
Organismes subventionnaires: | NSERC / CRSNG, IVADO |
Numéro de subvention: | RGPIN-2018-04481, PRF-2019-3295824760 |
URL de PolyPublie: | https://publications.polymtl.ca/58568/ |
Titre de la revue: | Journal of Hydrology (vol. 637) |
Maison d'édition: | Elsevier |
DOI: | 10.1016/j.jhydrol.2024.131333 |
URL officielle: | https://doi.org/10.1016/j.jhydrol.2024.131333 |
Date du dépôt: | 06 juin 2024 14:40 |
Dernière modification: | 27 sept. 2024 04:18 |
Citer en APA 7: | Jalbert, J., Ratté-Fortin, C., Burnet, J.‐B., & Papillon, É. (2024). Categorization of precipitation for predicting combined sewer overflows. Application to the City of Montréal. Journal of Hydrology, 637, 131333 (7 pages). https://doi.org/10.1016/j.jhydrol.2024.131333 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions