
Titre:
Title:

Categorization of precipitation for predicting combined sewer 
overflows. Application to the City of Montréal

Auteurs:
Authors:

Jonathan Jalbert, Claudie Ratté-Fortin, Jean‐Baptiste Burnet, & Émilie
Papillon 

Date: 2024

Type: Article de revue / Article

Référence:
Citation:

Jalbert, J., Ratté-Fortin, C., Burnet, J.‐B., & Papillon, É. (2024). Categorization of 
precipitation for predicting combined sewer overflows. Application to the City of 
Montréal. Journal of Hydrology, 637, 131333 (7 pages). 
https://doi.org/10.1016/j.jhydrol.2024.131333

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/58568/

Version: Version officielle de l'éditeur / Published version 
Révisé par les pairs / Refereed 

Conditions d’utilisation:
Terms of Use:

CC BY-NC-ND 

Document publié chez l’éditeur officiel
Document issued by the official publisher

Titre de la revue:
Journal Title:

Journal of Hydrology (vol. 637) 

Maison d’édition:
Publisher:

Elsevier

URL officiel:
Official URL:

https://doi.org/10.1016/j.jhydrol.2024.131333

Mention légale:
Legal notice:

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://doi.org/10.1016/j.jhydrol.2024.131333
https://publications.polymtl.ca/58568/
https://doi.org/10.1016/j.jhydrol.2024.131333


Journal of Hydrology 637 (2024) 131333

A
0
n

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Research papers

Categorization of precipitation for predicting combined sewer overflows.
Application to the City of Montréal
Jonathan Jalbert a,∗, Claudie Ratté-Fortin b, Jean-Baptiste Burnet c, Émilie Papillon d

a Department of Mathematical and Industrial Engineering, Polytechnique Montréal, Montréal (QC), Canada
b Department of Decision Sciences, HEC Montréal, Montréal (QC), Canada
c Department of Civil, Geological and Mining Engineering, Polytechnique Montréal, Montréal (QC), Canada
d City of Montréal, Montréal (QC), Canada

A R T I C L E I N F O

This manuscript was handled by Andras Bar-
dossy, Editor-in-Chief, with the assistance of Shree-
dhar Maskey, Associate Editor.

Dataset link: https://github.com/jojal5/Publica
tions

Keywords:
Combined sewer overflow
CSO
Precipitation
Rainfall
Decision tree

A B S T R A C T

Combined sewer systems are widespread in America and Europe. They often face limitations in transport
or treatment capacity, especially during heavy rain events or thaw periods, resulting in combined sewer
overflows (CSOs). Predictive modeling for CSOs is essential in a risk management context, and some studies
have presented methods to categorize precipitations based on their potential to generate overflows. However,
the precipitation classification is usually based on a few characteristics, and its predictive power is limited.
The objective of this study is to present a simple yet powerful method to categorize precipitation for predicting
CSO occurrences. A prediction model, based on an optimized classification tree, is proposed to predict CSO
occurrences as a function of publicly accessible precipitation data. We fit the model on 9 overflow outlets
in Montréal city from 2013 to 2019 and use this model to predict CSOs in 2020. The results showed a very
good predictive power of overflows, with a prediction rate of 89%, a sensitivity rate of 83%, and a specificity
rate of 91%. The method is also more accurate than the 5-category classification currently used by the City
of Montréal. The proposed method could be easily applied to another region where CSO data are available,
providing a simple and rigorous method for predicting CSOs across urban drainage networks containing many
overflow outlets.
1. Introduction

Wastewater and stormwater management are crucial services for
water resources quality, infrastructure cost-efficiency, public health
and sustainable environmental protection. In Europe, 70% of the total
sewer network is comprised of combined sewers, a system that collects
and transports both municipal wastewater and stormwater/snowmelt
runoff. In North America, most combined systems are concentrated in
the older cities (e.g. New York and Philadelphia) in the Northeastern
and Great Lakes regions (Environmental Protection Agency, 1994).
This sewer infrastructure can be limited in its transport or treatment
capacity (especially during heavy rain events or snowmelt periods)
leading to combined sewer overflows (CSOs) that result into the dis-
charge of untreated wastewater into receiving waterbodies. Between
2013 and 2017, about 2.7% of all wastewater collected and discharged
by municipal wastewater systems in Canada were untreated wastewater
from combined sewer overflows (CSOs), the equivalent of an average
160 million cubic meters annually (Environment and Climate Change
Canada, 2020).

∗ Corresponding author.
E-mail address: jonathan.jalbert@polymtl.ca (J. Jalbert).

CSOs threats to human health and environment are well docu-
mented (Gasperi et al., 2008; Al Aukidy and Verlicchi, 2017; Munro
et al., 2019; Soriano and Rubió, 2019; Madoux-Humery et al., 2016),
and several studies focused on quantifying water quality dynamics
during CSOs events (Casila et al., 2020; Kim et al., 2020) to better
understand CSOs impacts on water quality and ecosystem degradation.
Among others, Madoux-Humery et al. (2016) analyzed the impact of
CSOs on Escherichia coli (E. coli) concentrations at two drinking water
intakes in the Greater Montréal area. Jalliffier-Verne et al. (2017)
investigated the impact of climate change on E. coli concentrations
on CSOs, as well as Iqbal et al. (2019) who evaluated the impact of
potential future socio-economic scenarios, such as changes in popula-
tion and livestock densities, urbanization and climate change. Results
showed that E. coli concentrations were influenced by socio-economic
development and climate change, and are expected to increase in future
horizons.

Modeling of CSOs is essential to establish the risks of overflow and
to quantify the impact of mitigation measures. Little guidance is avail-
able on CSO analysis methods for optimal design of combined sewer
vailable online 20 May 2024
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solutions (Environmental Protection Agency, 1999; Jean et al., 2018).
To address these issues, some studies investigated the relationships be-
tween CSOs and rainfall characteristics to estimate overflow occurrence
or discharged volumes from rainfall series (Sandoval et al., 2013; Yu
et al., 2013; Fortier and Mailhot, 2015; Mailhot et al., 2015; Madoux-
Humery et al., 2016). Some of them used hydraulic and/or hydrologic
models to route precipitation into the drainage system (Thorndahl and
Willems, 2008; Yu et al., 2013; Jean et al., 2018). For instance, Thorn-
dahl and Willems (2008) described CSOs occurrence with depth and
duration of rainfall events using a commercial urban drainage model.
Jean et al. (2018) used PCSWMM software to evaluate how different
types of rainfall data impacts CSO volume threshold estimations. Others
have used probabilistic methods, such as Mailhot et al. (2015) who
developed a simple method to estimate the average number of CSOs per
year using rainfall estimates and records of basic spill measurements for
4285 combined sewer overflow outlets.

These studies helped understanding the relationship between rain-
fall events and CSO occurrence, and identifying rainfall variables to
establish key thresholds that may lead to sewer failures in a specific
area. For example, Yu et al. (2018) identified CSO occurrence thresh-
olds using rainfall depth, maximum intensity and duration for 67 urban
outfalls in Tokyo. Their choice of selecting the same three variables for
all 67 outfalls was supported by previous studies (e.g. Mailhot et al.,
2015; Schroeder et al., 2011). Discrimination between overflow and
non-overflow events was done using maximum coincidence rates calcu-
lated for each coupled rainfall variables. Day and Seay (2020) used the
same approach by classifying overflow and non-overflow events with
coincidence rates calculated for each coupled rainfall variables.

Although these studies presented valuable methods to categorize
precipitations according to their potential to generate overflows, quan-
titative analysis is not often well detailed. Few rainfall variables are
tested to identify occurrence thresholds and most studies used rainfall
intensity, duration and depth, or a combination of these variables (Mail-
hot et al., 2015; Schroeder et al., 2011). In addition, thresholds are
fixed separately whereas depth, intensity and duration are dependant.

The goal of the present paper is to develop a general and simple
method for predicting CSO binary occurrences as a function of precip-
itation characteristics. The proposed methodology uses classification
trees and is illustrated with an application for the management of a
public beach in the City of Montréal. Although the study is illustrated
for the City of Montréal, the method could easily be applied to other
smaller or larger cities where CSO and rainfall data are readily avail-
able. The remainder of the paper is as follows: Section 2 describes
the publicly available CSO and precipitation data. Section 3 provides
an overview of classification trees, and Section 4 presents the results
for predicting CSOs as a function of precipitation characteristics using
a classification tree. Section 5 discusses the proposed approach and
compares it to the existing classification used by the city. Finally,
Section 6 provides a conclusion. Note that the Julia code and the data
for reproducing all the results are available on the following public
repository: https://github.com/jojal5/Publications.

2. Data

2.1. Combined sewer overflows

In the city of Montréal, 60% of the total sewer network is combined
sewers. Montréal sewer system has 170 overflow outlets located around
the island (Fig. 1). On the South shore, overflows are discharging into
the St. Lawrence River while on the North shore, they are discharging
into the Des Prairies River. Both rivers are the major drinking water
supplies of the city and they serve as recreational areas.

The City of Montréal has made the daily records of combined sewer
2

overflows openly accessible, and the 2013–2020 data can be accessed
Table 1
Instances of daily overflow outlets spilling among the 9 considered
between 2013 and 2019.
Number of individual CSOs Occurrence

0 1101
1 105
2 31
3 14
4 11
5 10
6 8
7 4
8 3
9 1

publicly.1 CSOs caused by planned construction works, emergencies,
and snowmelt have been excluded from our analysis to focus solely on
overflows triggered by precipitation. Therefore, only CSOs occurring
between May and October were considered to emphasize rainfall-
related events. The recorded overflows from the years 2013 to 2019
were retained as the training set, and the recorded overflows in the
remaining year of 2020 correspond to the test set. There are a total
of 1288 overflow observations between the months of May to October
(184 days) for the 7 years of the training set (2013 to 2019 inclusive).

This study focuses on the 9 overflow outlets, indicated by the darker
red dots in Fig. 1, that influence the public Verdun beach upstream,
marked by the blue dot, which includes swimming areas and other
recreational activities. These outlets are identified by the following
codes in the dataset publicly provided by the city: 4370-03D, 4370-05D,
4430-04D, 4430-01D, 4430-02D, 4420-01D, 4795-01D, 4400-02D, and
4400-01D. Table 1 compiles the number of days in the training set
based on the number of overflowing outlets. There are 1101 days out
of 1288 where no CSO occurred at any of the 9 outlets, and there is
only one day where all 9 outlets overflowed.

The daily overflows from the 9 sites influencing the public beach
area are aggregated to offer a comprehensive depiction of CSO dy-
namics at the beach scale. For a given day, an aggregated overflow is
defined if an overflow was recorded at least one out of the 9 overflow
outlets. This stringent definition ensures the inclusion of every CSO
of the 9 outlets in the overall picture at the beach scale. Therefore,
there are 1101 days where no aggregated overflow occurred, and 187
days where at least one occurred. These aggregated overflows are
represented by a binary variable.

2.2. Precipitations

Precipitation data recorded every 15 minutes at the Pierre-Elliott-
Trudeau International Airport in Montréal from 2013 to 2020 were
retrieved from Environment and Climate Change Canada. Fig. 1 shows
the location of the station. Precipitation data from May to October
were extracted, and rain accumulations over 15 minutes, 30 minutes,
1 hours, 2 hours, 3 hours, 4 hours, 6 hours, 8 hours, 12 hours, and
24 hours were calculated using the appropriate duration sliding win-
dow based on previous records. For each duration, the maximum daily
accumulation was retained. For example, on a given day, the retained
accumulation during a 1 hour period is the largest among the 24 hourly
amounts recorded during that day. The initial hourly accumulation of
the day at 12:00 A.M. consists of the accumulations over the one-hour
duration of the previous day between 11:00 P.M. and 12:00 A.M.

To establish the optimal classification of precipitation accumulation
causing combined sewer overflows, a classification tree is proposed.
The daily occurrences of overflows correspond to the classification
variable: 1 if an overflow occurred and 0 otherwise. The explanatory

1 https://donnees.Montreal.ca/ville-de-montreal/debordement

https://github.com/jojal5/Publications
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Fig. 1. Location of the 170 overflow outlets (red dots), rainfall station (black star), and the public beach (blue dot) on the Montréal Island. The darker red dots indicate the
outlets studied in this paper. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
variables (also referred to as features) correspond to the maximum daily
rain accumulations over the various periods considered.

In order to obtain a simple categorization of precipitation, the max-
imum depth of the tree was set at 2, producing a partition composed
of at most 4 categories. Some leafs could be merged afterwards if the
cross-entropy does not increase too much.

3. Classification trees

In the present paper, we propose using a classification tree to cate-
gorize precipitation based on its potential to generate CSOs. The binary
variable represents the occurrence or absence of a daily aggregated
overflow, and the feature space consists of the daily maximal precipi-
tation accumulation during various durations. This section provides a
brief overview of classification trees. For more in-depth information,
interested readers can refer to dedicated references on classification
trees, such as Hastie et al. (2009).

A classification tree is a supervised learning algorithm, notably
useful for predicting the class of an observation based on its features.
It involves partitioning the feature space into a set of rectangles. For
each rectangle, a class value is assigned to the data inside the rectangle
using the majority rule. In graph theory, these rectangles in the feature
space are referred to as tree leaves. Classification trees are simple yet
powerful models that perform well even with numerous correlated
explanatory variables. The ease of interpreting binary recursive trees
is a major advantage, supporting their widespread use.

The partition is achieved through recursive binary splits. The initial
split divides the feature space into two rectangles, aiming to create the
purest possible rectangles, where each containing observations belong-
ing to a single class. While achieving perfect purity is impractical, the
feature and split point are chosen to minimize an impurity measure.
The cross-entropy, or deviance, is a commonly used impurity measure
for a rectangle. Let �̂� represent the proportion of class 𝑗 ∈ 0, 1
3

𝑖𝑗
observations in rectangle 𝑖 ∈  , where  denotes the set of rectangles.
Define 𝐻(𝑖) as the cross-entropy of node 𝑖:

𝐻(𝑖) =
1
∑

𝑗=0
�̂�𝑖𝑗 log �̂�𝑖𝑗 .

If the leaf is pure, the cross-entropy is null since 𝑝𝑖𝑗 ∈ {0, 1}. Otherwise,
the cross-entropy increases with the heterogeneity of the rectangle.

After the first split, each of the two rectangles is further divided into
two more rectangles using the same method. This process continues
until a stopping criterion is met. Typically, the number of binary splits
indicating the tree depth is fixed as the stopping criterion. Once the
set depth is reached, the merging of some rectangles is considered,
provided it does not significantly increase the impurity measure. This
merging criterion is also determined by the analyst and this procedure
is referred to as pruning the tree. There is a trade-off between capturing
the data characteristics and avoiding overfitting, a consideration when
determining the number of rectangles.

4. Predicting CSOs with a classification tree

4.1. Partioning precipitation of the training set

A classification tree has been fitted to model the aggregated over-
flows (the binary variable) as a function of the precipitation features
(the daily maximal precipitation accumulations during various dura-
tions) in the training set. The depth was fixed at 2, and cross-entropy
was used as the impurity measure. Fig. 2 illustrates the fitted tree.
Among all possible durations and split points, the 1 hour accumulation
with a threshold of 2.95 mm proves to be the most effective for
partitioning precipitation based on its potential to trigger overflow, as
it corresponds to the first split. The subsequent second split further
refines the classification of precipitation according to its potential to
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Fig. 2. Classification tree for precipitation for predicting CSO. 𝑋𝑑 stands for the
precipitation accumulation during the time period 𝑑 and the ratio at each leaf indicates
the number of CSOs over the number of rainfall events.

Fig. 3. CSO occurrences as a function of precipitation categories.

Fig. 4. Overflow occurrences as a function of the rectangles in the precipitation feature
pace obtained with the classification tree.

ause overflow. The two leaves on the left branch at the second level
ere merged during the pruning procedure.

This tree implies a 3-class categorization of precipitation after prun-
ng. Category 1 is defined when less than 2.95 mm falls in a 1 hour
eriod. For precipitation in this category, overflow occurs very rarely:
7 times out of 554. Category 2 is defined when the accumulation over
1 hour period is greater than 2.95 mm, and the accumulation over a
hour period is less than 13.35 mm. For precipitation belonging to

ategory 2, overflow occurs often: 75 times out of 137. Category 3
s defined when the accumulation is greater than 2.95 mm over the

hour duration and greater than 13.35 mm over the 4 hour duration.
recipitation in Category 3 triggers overflow most of the time: 60 out
f 65. Fig. 3 illustrates the purity of the categorization, while Fig. 4
hows the resulting rectangles in the precipitation feature space.
4

Table 2
Confusion matrix of the CSO prediction model for
2020 calibrated with the 2013–2019 CSO dataset.
Condition 1 stands for aggregated overflow, and
condition 0 stands for no overflow.

4.2. Precipitation category and number of individual overflows

Although CSOs have been aggregated to identify the precipitation
categories triggering them for the 9 outlets influencing the public
beach, it is interesting to visualize the number of CSOs for each
individual outlet when there is an aggregated overflow. The number
of individual CSOs can be seen as a measure of the aggregated CSO
severity. An overflow could be deemed severe when many outlets
overflow. Fig. 5 shows the number of overflowing outlets when there
is an aggregated overflow as a function of precipitation category. For
Category 1 precipitation, a total of 37 aggregated overflows out of 554
rainy days were recorded. When an aggregated overflow occurs, the
number of outlets overflowing is limited to one or two, as shown in
Fig. 5(a). Therefore, not only is an overflow uncommon for Category 1
rainfall, but when they occur, they are restricted to a limited number
of sites.

For Category 2 precipitation, a total of 75 aggregated overflows out
of 137 rainy days were recorded. When an aggregated overflow occurs,
it is more severe than for Category 1 precipitation, as the number of
overflowing outlets tends to be larger (Fig. 5(b)). Out of the 65 days
with Category 3 precipitation in the training set, 60 of them generated
an aggregated overflow, and when it occurs, the overflow tends to be
the most severe, as shown in Fig. 5(c).

4.3. CSO prediction on the test set

To assess the predictive capability of the model, it was trained on
the data from 2013 to 2019 and then used to predict the aggregated
CSOs on the test set from 2020. For prediction purposes, we assume
that overflow is triggered by Category 2 and Category 3 precipitation
(majority rule), while Category 1 does not lead to overflow.

Between May 1st and October 31st, 2020, 74 Category 1 precip-
itations were recorded, along with 17 Category 2 and 10 Category 3.
Table 2 shows the confusion matrix for CSO predictions. The prediction
accuracy is 89%, known as the coincidence rate of predicted and
observed CSOs and non-CSOs, with a sensitivity of 83% (proportion
of correctly predicted CSOs) and a specificity of 91% (proportion of
correctly predicted non-CSOs). Using only two explanatory variables for
three categories—precipitation accumulation over 1 hour and 4 hour
durations, the predictive power of CSOs is very good.

Predicting CSOs for Category 2 precipitation increased the sensibil-
ity to 84% but the specificity and the accuracy decreased to 80% and
82%, respectively. It was decided to maximize specificity to increase
confidence in predicted absence of overflows.

5. Discussion

5.1. Model fit and predictive power

The aim of the present paper was to identify a small set of simple

rules for predicting CSOs using easily accessible data. This is why
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Fig. 5. Empirical distribution of the number of outlets that overflow among the 170 based on rainfall categorization when there is an aggregated overflow.
e

C
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C

nly rainfall data recorded at Pierre-Elliott-Trudeau Airport was used.
espite the fact that these data do not capture the spatial heterogeneity
f precipitation on the Montréal island, the model fit and predictive
ower are still very good, as shown respectively in Fig. 2 and in Table 2.
recipitation recorded by the meteorological station network utilized
y the City of Montréal could potentially enhance the fit and predic-
ion power of the model. These data could be treated as additional
xplanatory variables, and the same tree-fitting procedure could find
he best variable and split point among all additional possibilities.
owever, these data are not publicly available, and, in general, they do
ot undergo rigorous quality checks to meet the World Meteorological
rganization standards, as the data from the Pierre-Elliott-Trudeau
irport. Therefore, we propose a simple yet powerful model using data

hat are readily available to scientists who need to predict CSOs.
The three categories of precipitation, defined by the precipitation

ccumulation over 1- and 4 hour durations, made it possible to achieve
good fit and predictive power for overflows. The performance may

e further improved by considering a tree with more depth. However,
he precipitation categories would consequently increase, and we have
hown that the proposed use of three categories constitutes an excellent
rade-off between simplicity, fit, and predictive power.

Precipitation accumulations over several periods of time constitute a
owerful set of explanatory variables for predicting CSOs that are easy
o obtain and interpret. Nevertheless, other explanatory variables could
e considered, particularly the duration of the period of dry weather
etween two rainy events. This variable could be integrated into a more
omplex model to attempt to explain the heterogeneity of overflows
or the same rainfall intensity. In the proposed 3-category model, this
ariable is not easily usable. It could be incorporated into another type
f model, such as logistic regression, but this is beyond the scope of the
resent paper.

.2. Binary splits

As shown in Fig. 4, the rainfall categories are defined by rectangles.
n cases where the two explanatory variables are strongly dependent,
5

C

it would be possible to split the feature space using another rule,
such as triangle partitioning. This could be achieved using multiway
splits, but the resulting model would be generally less intuitive and
simple to interpret (Hastie et al., 2009). Also, multiway splits can
be accomplished by a series of binary splits, maintaining a simple
interpretation. Additionally, because it is impossible for precipitation
accumulated over 3 hours to exceed accumulation over 4 hours, the
rectangles shown in Fig. 4 effectively act as triangles since no points can
lie below the unit slope line. We opted for the rectangle interpretation
because it directly stems from binary splits and is more versatile for
explanatory variables with lower levels of dependence.

5.3. Comparison with the existing categorization

The city engineers are currently using a rainfall categorization based
on the characteristics of rain events for various purposes, including
CSO prediction (Mailhot et al., 2019). A rain event is defined as a
continuous streak of precipitation, which can be extracted from the first
non-zero record to the last one in the 15-minute time step records. The
5-category classification utilizes the volume 𝑆 of precipitation (in mm)
that has accumulated during the rain event, as well as the maximum
intensity 𝐼 in mm∕h, calculated over a two-hour period during the
vent:

ategory 1 : 𝑆 < 10 mm.

ategory 2 : 10 mm ≤ 𝑆 < 20 mm and 𝐼 < 5 mm∕h.

ategory 3 : 10 mm ≤ 𝑆 < 20 mm and 𝐼 ≥ 5 mm∕h.

ategory 4 : 𝑆 ≥ 20 mm and 𝐼 < 5 mm∕h.

ategory 5 : 𝑆 ≥ 20 mm and 𝐼 ≥ 5 mm∕h.
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Fig. 6. Precipitation categories used by the City of Montréal for CSO management.

Fig. 7. Aggregated CSO occurrences (2013–2019) as a function of the rainfall event
categories currently defined by the city.

Table 3
Confusion matrix for the CSO predictions on the test
set using the city classification.

The precipitation classification is illustrated in Fig. 6. According to
Mailhot et al. (2019), events of categories 1 to 3 infrequently generate
CSOs, whereas events of categories 4 and 5 are the most likely to trigger
CSOs.

Fig. 7 summarizes CSO occurrences as a function of the rainfall
event category, as currently defined by the city. However, this catego-
rization does not discriminate well, as CSOs and non-CSOs are mixed
in the same rainfall category. If we assume that rainfall events of
categories 4 and 5 generated overflows, the confusion matrix illustrated
in Table 3 is obtained on the test set. The correct rate of predictions
is 74%, with a sensitivity of 17% and a specificity of 98%. Both the
correct rate and the sensitivity of the predictions are lower compared
to the proposed 3-category classification. This is mainly due to the fact
that the definition of the categories has not been optimized for the
prediction of overflows.

Additionally, the classification by rainfall events is a little more
difficult to achieve because the streak has to be identified with several
arbitrary choices, such as when to separate or merge rainfall events.
For instance, if two rainy events are an hour apart, do they need to
6

be merged? What if they are three hours apart? This problem does not
arise with precipitation accumulations, as proposed in Section 2.2.

5.4. Dynamic sewer management

The City of Montréal implements real-time flow control in the
sewer system during rainfalls to minimize overflows. The network
configuration can be dynamically adjusted for each rainfall event by,
for instance, opening or closing some gates. This dynamic nature might
make it more challenging to establish a clear relationship between
rainfall data and the occurrence of overflows. Therefore, we did not
anticipate achieving perfect predictive power of CSOs as a function
of precipitation. Nevertheless, the achieved predictive power without
considering this dynamic management is satisfactory. Taking into ac-
count real-time control would necessitate hydraulic simulations, which
is beyond the scope of this paper.

6. Conclusion

This paper proposed a simple yet powerful method to categorize
precipitation for the purpose of predicting CSOs occurrence. We applied
the method on 9 overflow outlets in the City of Montréal using data
from 2013 to 2020, and used simple rules for predicting CSOs using
easily accessible data. The resulting model, using only a 3-category
precipitation classification, performed very well on the test set with a
prediction rate of 87%, a sensibility rate of 76% and a specificity rate
of 98% fro predicting CSOs. It also exceeded the performance of the
model used by the city of Montréal using the 5-category classification
(predictions rate of 74%, sensibility of 17% and specificity of 98%).

The framework developed in this paper can be easily adapted to
another subset of overflow outlets or to another set of meteorological
station observations. The resulting precipitation classification could be
different, as the watershed characteristics of the outlet subsets could
also vary. Additionally, the method can be easily applied to another
region where CSO data are available.

Future work could focus on adding other features to the model. For
example, a previous dry period, water flow in sewers before precipita-
tion, snowmelt, etc. Future work should also focus on receiving water
impact. Nevertheless, we believe that the proposed simple procedure
can be a useful tool for managing CSO occurrences based on precipita-
tion categories. The proposed model can help, for example, the beach
manager to anticipate the decision to open or close the beach according
to the rain category, even before performing water quality tests.
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