<  Retour au portail Polytechnique Montréal

Retraining surrogate models in increasingly restricted design spaces: a novel building energy model calibration method

Florent Herbinger et Michaël Kummert

Article de revue (2024)

Document en libre accès dans PolyPublie
[img]
Affichage préliminaire
Libre accès au plein texte de ce document
Version finale avant publication
Conditions d'utilisation: Tous droits réservés
Télécharger (2MB)
Afficher le résumé
Cacher le résumé

Abstract

Surrogate (i.e. meta) models can approximate building energy models (BEMs) accurately and quickly, hence they have been widely used in BEM calibration studies. Typically, the surrogate models are trained a single time over the entire unknown building parameter space with a design such as Latin hypercube sampling. In this article, a multiple polynomial regression surrogate model is, instead, retrained with increasingly restricted designs. In each training repetition, the bounds of the design narrow around the unknown building parameter values that minimize the error between the surrogate model’s predictions and the measured energy. This ‘cascading surrogate’ calibration method finds CVRMSE values that are much lower than those of a powerful black box optimizer in a case study with simulated ‘measured’ data. However, the method has similar performance to the black box optimizer in a case study with real hourly measured energy, probably since the BEM was not configured accurately enough.

Mots clés

Département: Département de génie mécanique
Organismes subventionnaires: CRSNG/NSERC, FRQ, Arbour foundation, Fondation et alumni de Polytechnique Montréal, Hydro-Québec
URL de PolyPublie: https://publications.polymtl.ca/58505/
Titre de la revue: Journal of Building Performance Simulation (vol. 17, no 5)
Maison d'édition: Taylor & Francis
DOI: 10.1080/19401493.2024.2346833
URL officielle: https://doi.org/10.1080/19401493.2024.2346833
Date du dépôt: 03 juin 2024 14:54
Dernière modification: 17 août 2025 16:33
Citer en APA 7: Herbinger, F., & Kummert, M. (2024). Retraining surrogate models in increasingly restricted design spaces: a novel building energy model calibration method. Journal of Building Performance Simulation, 17(5), 527-544. https://doi.org/10.1080/19401493.2024.2346833

Statistiques

Total des téléchargements à partir de PolyPublie

Téléchargements par année

Provenance des téléchargements

Dimensions

Actions réservées au personnel

Afficher document Afficher document