Felipe Navarro, Nelson Morales, Carlos Contreras‐Bolton, Carlos Rey et Víctor Parada
Article de revue (2024)
Document en libre accès dans PolyPublie et chez l'éditeur officiel |
|
Libre accès au plein texte de ce document Version officielle de l'éditeur Conditions d'utilisation: Creative Commons: Attribution (CC BY) Télécharger (4MB) |
Abstract
Determining the design of pushbacks in an open-pit mine is a key part of optimizing the economic value of the mining project and the operational feasibility of the mine. This problem requires balancing pushbacks that have good geometric properties to ensure the smooth operation of the mining equipment and so that the scheduling of extraction maximizes the economic value by providing early access to the rich parts of the deposit. However, because of the challenging nature of the problem, practical approaches for finding the best pushbacks strongly depend on the expert criteria to ensure good operational properties. This paper introduces the Advanced Geometrically Constrained Production Scheduling Problem to account for operational space constraints, modeled as truncated cones of extraction. To find the best solution for this problem, we present a parallel genetic algorithm based on a genotype–phenotype model such that the genotype symbolizes the base block of a truncated cone, and the phenotype represents the cone itself. A central computer node evaluates these solutions, collaborating with various secondary nodes that evolve a population of feasible solutions. The PGA’s efficacy was validated using comprehensive test instances from established research. The PGA solution exhibited a consistent average copper grade across periods, with its incremental phases reflecting real-world mine geometry. Moreover, the benefits of the MeanShift clustering technique were evident, suggesting effective phase-based scheduling. The PGA’s approach ensures optimal resource utilization and offers insights into potential avenues for further model enhancements and fine-tuning.
Mots clés
open-pit problem; parallel genetic algorithm; mine scheduling
Sujet(s): |
1400 Génie minier et minéral > 1400 Génie minier et minéral 1400 Génie minier et minéral > 1401 Génie minier 1600 Génie industriel > 1600 Génie industriel |
---|---|
Département: | Département des génies civil, géologique et des mines |
Organismes subventionnaires: | ANID PIA /BASAL, USACH Sabbatical Project VP-2022-2023, Universidad de Santiago de Chile, National Agency for Research and Development (ANID) - Scholarship Program, Instalación en la Academia, Vicerrectoria de Investigación y Postgrado (VRIP), CONICYT PIA/BASAL |
Numéro de subvention: | AFB220002, AFB230001, USA1899-Vridei 061919VP-PAP, DICYT- USACH 061919PD, 2018-72190600, Folio 85220108, RE2360219, AFB230001-ANID |
URL de PolyPublie: | https://publications.polymtl.ca/58205/ |
Titre de la revue: | Minerals (vol. 14, no 5) |
Maison d'édition: | MDPI |
DOI: | 10.3390/min14050438 |
URL officielle: | https://doi.org/10.3390/min14050438 |
Date du dépôt: | 17 juin 2024 16:21 |
Dernière modification: | 25 sept. 2024 22:18 |
Citer en APA 7: | Navarro, F., Morales, N., Contreras‐Bolton, C., Rey, C., & Parada, V. (2024). Open-pit pushback optimization by a parallel genetic algorithm. Minerals, 14(5), 438 (17 pages). https://doi.org/10.3390/min14050438 |
---|---|
Statistiques
Total des téléchargements à partir de PolyPublie
Téléchargements par année
Provenance des téléchargements
Dimensions